Donglin Bai

Donglin Bai


PH.D. University of Cambridge
M.Sc. Peking University
B.Sc. Peking University
Office:  Dental Sciences Building, Room 00073
p. 519.850.2569
f. 519.850.2562

Visit: Dr. Bai's Homepage
Visit: The Gap Junction Group Website
See Publications by Dongln Bai on PubMed

I am interested in defining the functional domains/residues of connexin molecule in determining the gap junction channel properties, such as docking, Vj-gating, single channel conductance, and delineating how gap junction mutants causing human diseases. We use molecular engineering method to generate mutant connexins and use dual patch clamp, dye-transfer and fluorescent imaging techniques to investigate the functional outcomes. We also use genetically modified mouse models to study the functional defects of gap junction mutants in vivo. I received grants from the following Canadian funding agencies: CIHR, CRC, NSERC, HSFC and ERA.


Tong, X., Aoyama, H., Tsukihara, T. and Bai, D. (2014) Charge at the 46th residue of Cx50 is crucial for the gap junctional unitary conductance and transjunctional voltage-dependent gating. J Physiol (online published) doi:10.1113/jphysiol.2014.280636

Sun, Y., X. Tong, H. Chen, T. Huang; Q. Shao; W. Huang, D.W. Laird and Bai, D. (2014) An atrial-fibrillation-linked connexin40 mutant is retained in the endoplasmic reticulum and impairs the function of atrial gap-junction channels. Dis Model Mech 7, 561-569

Bai, D. (2014) Atrial fibrillation-linked GJA5/connexin40 mutants impair gap junctions via different mechanisms. FEBS Lett 588, 1238-1243

Bai, D. and Wang, A.H. (2014) Extracellular domains play different roles in gap junction formation and docking compatibility. Biochem J 458, 1-10

Gong, X.Q., Nakagawa, S., Tsukihara, T. and Bai, D. (2013) A gap junction docking mechanism revealed by functional rescue of a human disease-linked connexin mutant. J Cell Sci 126, 3113-3120

Kim, M.S. Gloor, G.B. and Bai, D. (2013) The distribution and functional properties of Pelizaeus Merzbacher-like disease-linked Cx47 mutations on Cx47/Cx47 homotypic and Cx47/Cx43 heterotypic gap junctions. Biochem J 452, 249-258

Sun, Y., Yang, Y.Q., Gong, X.Q., Wang, X.H., Li, R.G., Tan, H.W., Fang, W.Y. and Bai, D. (2013) Novel germline GJA5/connexin40 mutations associated with lone atrial fibrillation impair gap junctional intercellular communication. Hum Mutat 34, 603-609

Nakagawa, S., Gong, X.Q., Maeda, S., Dong, Y., Misumi, Y., Tsukihara, T. and Bai, D. (2011) Asparagine175 of connexin32 is a critical residue for docking and forming functional heterotypic gap junction channels with connexin26. J Biol Chem. 286, 19672-19681

M.H. Gollob, D.L. Jones, A.D. Krahn, L. Danis, X.Q. Gong, Q. Shao, X. Liu, J.P. Veinot, A.S.L. Tang, A. Stewart, F. Tesson, G.J. Klein, R. Yee, A.C. Skanes, G.M. Guiraudon, L. Ebihara, D. Bai (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. New Eng J Med 354, 2677-26883