Minimally Invasive Biopsies of the Lung & Mediastinum in the Era of Personalized Medicine

Sara E. Monaco, MD
Associate Professor
Program Director, UPMC Cytopathology Fellowship
Director of FNA Biopsy Service & Clinic, Children’s Hospital of Pittsburgh & UPMC-Shadyside Hospital
University of Pittsburgh Medical Center (UPMC)
Pittsburgh, PA

Outline

• Introduction
 • Why minimally invasive biopsies?
 • Current Approach to Diagnosis of Mediastinal/Lung Lesions

• Interesting Cases
 • Pitfalls
 • Morphological challenges impacting ancillary studies

• Conclusion

Introduction

• Why minimally invasive techniques?
 • Over half of NSCLC patients present with metastases \(\rightarrow\) Dx & Stage with EBUS-TBNA
 • Minimally invasive biopsies \(\rightarrow\) Shorter length of stay & less cost
 • Need for subtyping and molecular studies/theranostic data, without the need for complete surgical excision

• Advantages of Cytological Specimens
 • Better nuclear & cytoplasmic detail
 • Less fixation artifact
 • Ability to have ROSE for triage & to allocate material for appropriate testing

Imaging & Diagnosis of Mediastinal/Lung Lesions

• Imaging Modalities
 • Chest Xray
 • CT Scan
 • PET CT Scan

• Minimally Invasive Diagnostic Modalities
 • Sputum/BAL/BB/BW/Pl Fl
 • CT-Guided FNA
 • Transbronchial FNA (Wang biopsy)
 • Supernavigational EMN biopsy
 • EBUS & EUS guided FNA
 • Endobronchial biopsy with touch preparation

Small Biopsies of Lung/Mediastinum: The Power of EBUS TBNA

• Advantages:
 • Minimally invasive
 • Image guidance
 • Tissue confirmation of +PET/CT findings & evaluation of LNs <1 cm
 • Broad sampling capability
 • On-site evaluation \(\rightarrow\) triage
 • Lower cost

• Disadvantages:
 • Inability to access all LNs
 • Not universally available
 • Time & experience requirement
 • Non-diagnostic specimens

Among patients with clinical stage IIIA, 40% of patients were down-staged with EBUS-FNA
Gilbert S et al., JTCVS 2009
Sampling Capability

LN Stations

Advantages of Minimally Invasive Small Biopsies

- Restaging
- Small LNs < 1 cm
- Poor Operative Candidates
- Non-Surgical Diseases
- Biomarker testing

What is the management?

EBUS Negative → Mediastinoscopy: Small focus of Metastatic SqCC

What is new with EBUS TBNA?

- **Equipment**
 - New needle sizes: 19-22G FNA needle
 - New types of needles: traditional TBNA needle vs Pro-core
 - New designs: superior echogenic design

- **Increased demand**
 - Managing ROSE: Telecytology vs Traditional
 - Weekend and late procedures: Cytology On-Call or Not?
 - Optimizing tissue: Doing more with less

Echotip ProCore™, Image courtesy of Cook Medical
Introduction

- Increase in small biopsies and cytology specimens for lung & mediastinal lesions has led to...
 - New approaches with improved biopsy techniques
 - Variety of different needles to choose from
 - New classification systems for small biopsies & cytology specimens
 - Expanding use for biomarker testing in the era of personalized medicine
 - Not enough to just make a diagnosis anymore
 - Do more with less
 - EGFR, ALK → EGFR, ALK, ROS, PD-L1, and more

Diagnostic Shift in Lung Cancer

PAST

- NSCLC vs. SCC
- Treatment
 - Surgical: NSCLC
 - Non-surgical: SCC

PRESENT

- Need for subtyping and molecular studies
- Theranostic data

Lung Cancer

- SCLC
- NSCLC
- Adenocarcinoma
- Squamous cell carcinoma
- NSCLC NOS
TABLE 1. Proposed Pulmonary Cytology specimen Terminology and Classification Scheme

<table>
<thead>
<tr>
<th>Diagnostic category</th>
<th>Risk of malignancy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondiagnostic</td>
<td>10</td>
</tr>
<tr>
<td>Negative for malignancy</td>
<td>24 (47%)</td>
</tr>
<tr>
<td>Atypical</td>
<td>54</td>
</tr>
<tr>
<td>Neoplastic, benign neoplasm, low-grade carcinoma</td>
<td>NA</td>
</tr>
<tr>
<td>Suspicious for malignancy</td>
<td>82</td>
</tr>
<tr>
<td>Malignant</td>
<td>77 (100%)</td>
</tr>
</tbody>
</table>

UPMC EBUS Data (2007-2010)

593 EBUS FNAs from 357 patients
34% with histological follow-up

Table 2. Adequacy Criteria of Rapid On-Site Evaluation Specimens of Endobronchial Ultrasound (EBUS)-Guided Transbronchial Needle Aspiration for the Diagnosis of Lung Cancer

<table>
<thead>
<tr>
<th>FNA Adequacy</th>
<th>Overall Total # (%)</th>
<th>Total with follow-up # (%)</th>
<th>False Negatives # (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsatisfactory</td>
<td>66 (11%)</td>
<td>30 (46%)</td>
<td>7 (23%)</td>
</tr>
<tr>
<td>Less than optimal</td>
<td>107 (18%)</td>
<td>55 (51%)</td>
<td>6 (11%)</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>420 (71%)</td>
<td>118 (28%)</td>
<td>4 (3%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>593</td>
<td>203 (34%)</td>
<td>17 (8%)</td>
</tr>
</tbody>
</table>

UPMC EBUS Data (2007-2010)

593 EBUS FNAs from 357 patients
34% with histological follow-up
EBUS TBNA & CTG FNA: Quantity & Quality

<table>
<thead>
<tr>
<th>CTG FNA</th>
<th>EBUS TBNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Anterior Mediastinum or Lung</td>
</tr>
<tr>
<td>Baseline cellularity (negative case)</td>
<td>Low</td>
</tr>
<tr>
<td>Cells present (negative case)</td>
<td>Few bronchial cells, macrophages & red blood cells. No background mucus present.</td>
</tr>
<tr>
<td>Abnormal case</td>
<td>Qualitative abnormality. Increase in inflammatory cells or tumor cells.</td>
</tr>
<tr>
<td>Screening</td>
<td>Faster (less cells to examine)</td>
</tr>
<tr>
<td>Location</td>
<td>Radiology</td>
</tr>
</tbody>
</table>

Diagnosis?

- NE tumor (Carcinoid)
- HG NE tumor (SCLC)
- Squamous Cell Carcinoma
- Adenocarcinoma

Molecular Testing + PD-L1

- EGFR
- KRAS
- ALK
- ROS
- BRAF
- RET
- ERBB2
- C-MET
- NTRK

Biomarker Testing in Lung Cancer

- Rose with Dedicated passes (FNA) or core biopsies
- Upfront blanks cut to avoid trimming of block
- Unstained charged slides numbered in order
- Limited IHC

Case 1: CTG-FNA of Lung Lesion

- 63 year old woman with a history of melanoma in 2012, with metastases in 2015 to the liver
 - Primary was a right lateral vaginal wall tumor in 2012
 - *BRAF* V600E positive, *NRAS* negative, *NF1* unknown
 - Currently on Nivolumab treatment (started 18 months prior to biopsy)
- CT scan: bilateral consolidative pulmonary opacities
- Infection
- CTG FNA of lung mass/opacity sampled
Case Diagnosis

- **Final Diagnosis**
 - Less than optimal- scant cellularity
 - Atypical cells present.
 - Atypical epithelial cells and chronic inflammation, favor reactive.
 - No viral or infectious etiology seen, including special stains.
 - Nivolumab was discontinued.
 - On follow-up (1 month later), most of lung lesions completely resolved.
 - Changes attributed to reactive pneumocyte atypia in the setting of PD-1 inhibitor toxicity (pneumonitis)

Adverse Pulmonary Reactions with PD-1 inhibitors

- Thought to be an autoimmune related pneumonitis
- Seen in 1-14% patients on phase 2 and 3 trials
 - Smaller % with high-grade toxicity
 - Larger % with low-grade toxicity
 - Rare respiratory failure & death (3)
- Sx: Pneumonia-like symptoms with bilateral lung infiltrates (rarely unifocal)
- Onset about 7-24 mo after Tx

NORMAL DESMOPLASIA (preTx)

TUMOR REGRESSION (postTx)

Cottrell TR et al, Annals of Oncology 2018
61 yo man with Hx of Melanoma, s/p Pembrolizumab, now LAD. EBUS FNA (subcarinal)

- Treatment: Steroids may not be required (systemic steroids needed in about 40% cases).
- Removal of the PD-1 checkpoint inhibitor (e.g., Nivolumab) usually causes granulomatous lesions to regress.
- No cases have been refractory to treatment, thus far.

64 yo woman with history of DLBCL s/p R-CHOP, now with residual mesenteric LAD, moderately FDG avid on PET scan.

- Benign/reactive epithelial cells
- Therapy-related atypia (chemotherapy, radiation, medication)
- Metaplastic changes (goblet cell or squamous metaplasia)
- Mesothelial hyperplasia
- Granulomatous inflammation/epitheloid histiocytes
- Cellular granulomas
- Contamination of the FNA needle
- Primary luminal dysplasia (Barrett’s esophagus) in EUS-FNA
Take Home Messages

- In the era of personalized medicine with new therapeutic agents, think about treatment related changes
 - Expanding number of protocols & targeted or other therapies
 - Neoadjuvant therapy for down-staging prior to resection
 - PD-1 inhibitors (Lung cancer, Melanoma, Other)
 - Other radiation/chemotherapy-related changes
 - Avoid False Positive Diagnoses
 - Cytology findings: pneumocyte/squamous atypia, granulomatous, fibrotic, inflammatory, or necrotic changes in the lymph node and lung

- Important to consider drug-induced toxicity for treatment
 - Test of time: Withdrawal of agent leading to improvement
 - Sometimes the best medicine is no medicine

Case 2: Lung EMN biopsy

- 40 year old woman with right lung mass
 - Non-smoker
 - 3.0 cm lung mass identified at an OSH
 - Previously biopsied at an OSH and called squamous cell carcinoma
 - Clinicians requested repeat biopsy given that she is non-smoker
 - EMN biopsy of lung mass
Case Diagnosis

- Final Diagnosis:
 - Satisfactory for interpretation.
 - Positive for malignant cells.
 - Non-small cell carcinoma.

- Comment: There are squamous and glandular features.
- Histology: Adenosquamous lung carcinoma
- Material submitted for molecular testing.
 - EGFR mutation +
- Pitfall: Diagnosis of squamous cell carcinoma could exclude patient from molecular testing and potential targeted therapies.

Diagnosis Matters

![Diagram showing diagnosis options and molecular testing]

Table 1.95 Diagnostic terminology for small biopsy specimens comparing the new IASLC/ATS/ERS terms with 2015 WHO terms in parentheses (2014, 2016).

- Small biopsyology: IASLC/ATS/ERS classification
- 2015 WHO classification

- Small cell carcinoma
- Large cell neuroendocrine carcinoma
- Adenosquamous carcinoma (if both components ≥ 10%)
- Adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma or large cell carcinoma with unclear immunohistochemical features.
- Pleomorphic, spindle cell, and/or giant cell carcinoma

Original Article

Analysis of Major Known Driver Mutations and Prognosis in Resected Adenosquamous Lung Carcinomas

- Ad1100C
- Ad1003C
- Ad1103C
- Ad1203C
- Ad1303C
- Ad1403C
- Ad1503C
- Ad1603C
- Ad1703C
- Ad1803C
- Ad1903C
- Ad2003C
- Ad2103C
- Ad2203C
- Ad2303C
- Ad2403C
- Ad2503C
- Ad2603C
- Ad2703C
- Ad2803C
- Ad2903C
- Ad3003C
- Ad3103C
- Ad3203C
- Ad3303C
- Ad3403C
- Ad3503C
- Ad3603C
- Ad3703C
- Ad3803C
- Ad3903C
- Ad4003C
- Ad4103C
- Ad4203C
- Ad4303C
- Ad4403C
- Ad4503C
- Ad4603C
- Ad4703C
- Ad4803C
- Ad4903C
- Ad5003C
- Ad5103C
- Ad5203C
- Ad5303C
- Ad5403C
- Ad5503C
- Ad5603C
- Ad5703C
- Ad5803C
- Ad5903C
- Ad6003C
- Ad6103C
- Ad6203C
- Ad6303C
- Ad6403C
- Ad6503C
- Ad6603C
- Ad6703C
- Ad6803C
- Ad6903C
- Ad7003C
- Ad7103C
- Ad7203C
- Ad7303C
- Ad7403C
- Ad7503C
- Ad7603C
- Ad7703C
- Ad7803C
- Ad7903C
- Ad8003C
- Ad8103C
- Ad8203C
- Ad8303C
- Ad8403C
- Ad8503C
- Ad8603C
- Ad8703C
- Ad8803C
- Ad8903C
- Ad9003C
- Ad9103C
- Ad9203C
- Ad9303C
- Ad9403C
- Ad9503C
- Ad9603C
- Ad9703C
- Ad9803C
- Ad9903C

Molecular Testing + PD-L1
- EGFR, KRAS, ALK, ROS
- BRAF, RET, ERBB2, C-MET, NTRK
Pitfall: Combined tumors

- Should I suggest adenosquamous lung carcinoma, or is one component benign/reactive?
 - Look at nuclear grade

- Combined tumors are rare (<5%), but could have important implications for testing
 - If you falsely assume an adenosquamous cell carcinoma is a squamous cell carcinoma, then you could exclude the patient from important targeted therapies if you did not send it for molecular testing
 - When in doubt...
 - Check history
 - Err on the side of calling NSCLC, NOS to initiate molecular testing

Misclassification of Lung AdenoCa

- Benign/Reactive changes
 - Goblet cell metaplasia, Treatment-related changes

- Low-to-intermediate grade neuroendocrine tumors

- Poorly differentiated NSCLC without material for cell block/IHC
 - SqCC, LCNEC

- Salivary gland type tumors
 - Mucoepidermoid carcinoma

- Metastatic non-pulmonary carcinomas

- Metastatic melanoma
Final Diagnosis: Neuroendocrine tumor, favor low-intermediate grade

Pitfall
Neuroendocrine tumors can have:
- Pseudoglandular spaces/rosettes
- Intranuclear inclusions
 - Seen in 2/227 (0.9%) of pulmonary NETs
 - Usually higher-grade NETs

NSCLC with giant cell/pleomorphic features
Lung Biopsy with touch prep: ROSE was Adenocarcinoma

TTF1
p40, Syn
Final Diagnosis

Squamous cell carcinoma on Lung Biopsy with touch prep

Basaloid SqCC

Large cell neuroendocrine Ca

Mucoepidermoid Carcinoma in the Lung

(ROSE was Adenocarcinoma)

EBUS TBNA: Metastatic Urothelial Carcinoma with Squamous differentiation

Take Home Messages

- Subclassification can be difficult in a subset of lung tumors
 - Obtain good clinical history (age, smoking status)
 - Look for history of prior malignancies
 - Use IHC to help

- Avoid unnecessary testing & loss of material
 - Morphological details can help guide selection
 - Do just enough to be correct
Case 3: CTG FNA and Core Bx with TP

- 82 year old woman with incidental well-circumscribed lesion in right upper lobe of the lung
- Prior CTG FNA showed features of a pulmonary hamartoma, but lesion was growing on imaging.
- CTG FNA and core biopsy with touch preparation.

Case Diagnosis

- Final Diagnosis:
 - Satisfactory for Interpretation
 - Positive for neoplasm
 - Salivary gland-type tumor, favor Epithelial-Myoepithelial Carcinoma.

- Challenges:
 - Biphasic lesions in the lung: not always hamartoma
 - Salivary gland-type tumors: primary versus metastatic
 - Lung tumors that do not fall into SCLC vs NSCLC are challenging

Follow-up

- No primary salivary gland lesion identified on CT-PET scan.
- Lobectomy showed a well-circumscribed, lobulated lung lesion grossly.
- Resection showed:
 - Carcinoma ex Pleomorphic adenoma
 - Carcinomatous component was an Epithelial-Myoepithelial carcinoma
Carcinoma ex Pleomorphic Adenoma in Lung

- Rare in the lung, but arises from the bronchial glands
- Must exclude a head and neck primary
- Considered a low-grade malignancy with long interval to recurrence or metastasis
- Most common carcinomas in this setting:
 - Poorly differentiated adenocarcinoma
 - Salivary duct carcinoma
 - Epithelial-myoepithelial carcinoma
- Gross: well circumscribed, pushing border in an endobronchial location

Carcinoma ex Pleomorphic Adenoma in Lung

- Histologically: Malignant myoepithelial cells and duct-like structures in benign chondromyxoid stroma
 - No mature cartilage
 - Biphasic cell population:
 - Large, clear myoepithelial cells (myoepithelial cells +S100, p63, SMMH, vim)
 - Small, dark ductal cells (epithelial cells +CK, EMA, +/- S100)
- Cytomorphology:
 - Cellular aspirates with cellular chondromyxoid-type material
 - Naked nuclei due to fragile clear cytoplasm of myoepithelial cells
 - Atypia
 - No mature cartilage

Differential Diagnosis

- Benign: Granuloma, Amyloidoma
- Hamartoma
- Mesenchymal tumor (e.g. solitary fibrous tumor, sarcoma)
- Metastatic spindle cell tumor with myxoid change (e.g. GIST)
- Salivary gland-type tumor
 - Primary (arising from the bronchial glands) vs. Metastatic
 - Benign (pleomorphic adenoma) vs. Malignant (epithelial-myoepithelial carcinoma)
 - Variable subtypes: pleomorphic adenoma, epithelial-myoepithelial carcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, basal cell neoplasm
- Primary lung carcinoma with desmoplastic stroma or mucin (Adenocarcinoma, Basaloid squamous cell carcinoma, Carcinosarcoma)

Pulmonary Hamartoma

- Scant cellularity
 - Due to dense nature of the lesion
 - Rubber eraser-like effect
- Clean Background
 - No necrosis or inflammation
 - Reactive bronchial cells
- Cartilaginous or Fibromyxoid fragments (metachromatic)
- Recurrent clonal rearrangements of HMGI(Y) gene on chr.6p21

Chromosomal abnormalities in salivary gland-like tumors that can be detected with FISH studies in small biopsies and cytology specimens.

*Note: These salivary gland tumors have only rarely been reported in the lung, and primarily are seen as metastases.

<table>
<thead>
<tr>
<th>Salivary gland-type tumor</th>
<th>Gene(s)</th>
<th>Chromosome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammary analogue secretory carcinoma*</td>
<td>ETV6-NTRK3</td>
<td>t(12;15)</td>
</tr>
<tr>
<td>Mucoepidermoid carcinoma</td>
<td>MECT1-MAML2</td>
<td>t(11;19)</td>
</tr>
<tr>
<td>Adenoid Cystic Carcinoma</td>
<td>MYB-NFIB</td>
<td>t(6,9)</td>
</tr>
<tr>
<td>Salivary duct carcinoma*</td>
<td>Her2/neu</td>
<td>17q</td>
</tr>
<tr>
<td>Hyalinizing clear cell carcinoma*</td>
<td>EWSR1-ATF1</td>
<td>t(12;22)</td>
</tr>
</tbody>
</table>
Take Home Messages

- Pulmonary hamartomas typically do not grow rapidly.
 - Increased growth on serial imaging is a **RED** flag.
- Think of SGTTs in the lung when you see a biphasic tumor with chondromyxoid material and basaloid or myoepithelial-type cells.
 - Atypical features to look for in a fibromyxoid lesion in the lung: high cellularity, atypia, bilayered glandular structures, and lesional growth
- Although SGTTs can occur as a primary in the lung (from the bronchial glands), a metastatic tumor should be excluded.
- FISH studies are becoming increasingly helpful in SGTTs for definitive classification.

Conclusions

- Minimally invasive biopsies & new FNA techniques have changed the way that thoracic & mediastinal lesions are approached
- New Classification Systems for small biopsies provide a framework for how we should be formulating diagnoses
- Biomarker testing is crucial & growing
- Small biopsy & cytology diagnoses can be challenging

Thank you!