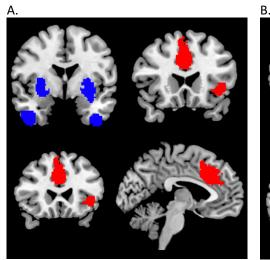
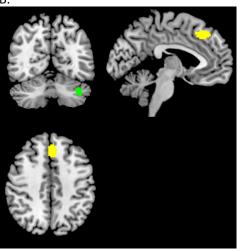
Neurovascular uncoupling in schizophrenia: A bimodal meta-analysis of brain perfusion and glucose metabolism

NIRON SUKUMAR, PRIYADHARSHINI SABESAN, UDUNNA ANAZODO, LENA PALANIYAPPAN

Central Principles


- 1. Psychotic disorders are most likely associated with disturbances in central blood supply.
- 2. In healthy brains, regional Cerebral Blood Flow (rCBF) is tightly coupled to resting cerebral glucose metabolism (rCMRglu).
- 3. Both rCBF (as measured by Arterial Spin Labeling) and rCMRglu (as measured by FDG-PET) can be used as markers of regional neurological activity.
- 4. Brain regions with concordant changes in rCBF and rCMRglu between patients and controls can be shown to be involved in the pathophysiology of schizophrenia with a greater degree of certainty than studies that have only investigated rCBF changes or have only investigated rCMRglu changes.
- 5. Brain regions that can be shown to have discordant changes in rCBF and rCMR $_{glu}$ between patients and controls may have changes in patients with schizophrenia that are related to neurovascular uncoupling (inflammation, mitochondrial dysfunction, oxidative stress, etc.).


Goals

- 1. Conduct a meta-analysis to combine studies that have used ASL or FDG-PET to identify brain regions of significant difference in neurological activity between patients with schizophrenia and healthy patients. (Concordant changes)
- 2. Identify brain regions of uncoupling between rCBF and rCMRglu in patients with schizophrenia and healthy controls. (Discordant changes)

Results

Region	SDM Z	MNI Coordinate	Cluster Size	P value	Jack-knife Score (/23)
Right Lenticular Nucleus, Putamen, BA 48	3.574	28,8,10	1466	0	23
Left Striatum	3.173	-22,2,4	1140	0	f22
Right Inferior Temporal Gyrus, BA 20	3.231	42,4,-42	612	0	24
Left Temporal Pole, Middle Temporal Gyrus, BA 20	2.506	-34,2,-44	316	< 0.0001	23
Right Thalamus	2.147	16,-22,12	123	0.001	23
Corpus Callosum	1.964	-18,-28,2	62	0.002	22
Right Median Cingulate / Paracingulate Gyri, BA 32	-2.838	6,22,32	1306	< 0.00001	21
Right Middle Occipital Gyrus, BA 18	-2.998	30,-96,12	241	0	24
Left Superior Occipital Gyrus, BA 17	-2.641	-14,-100,14	249	0.0001	23
Left Inferior Frontal Gyrus, Triangular Part, BA 47	-2.653	-42,22,-2	296	0.0001	22
Left Middle Frontal Gyrus, Orbital Part, BA 46	-2.550	-40,50,4	288	0.0002	8
Right Superior Frontal Gyrus, Dorsolateral BA 8	-2.213	20,20,56	82	0.002	20

A: Conjoint Changes, B: Disjoint Changes

Blue: CBF \uparrow , CMR \uparrow Red: CBF \downarrow , CMR \downarrow

Yellow CBF normal, CMR ↑ Green: CBF normal, CMR ↓