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ABSTRACT 

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease in the 

Western world given its association to obesity, type 2 diabetes and dyslipidemia. 

Medications are widely used in NAFLD to manage comorbid conditions, and there is 

significant interest in developing new drug therapies to treat the disease. Despite this, little 

is known about the effects of NAFLD on drug metabolism. We examined the activity and 

expression of the major drug metabolizing enzyme subfamily, cytochrome P450 3A 

(CYP3A) in subjects with NAFLD, and in mouse and cellular models. CYP3A activity 

was determined in healthy volunteers and subjects with biopsy-proven NAFLD by oral 

midazolam phenotyping and measurement of plasma 4β-hydroxycholesterol, an 

endogenous metabolic biomarker. CYP3A4 transcriptional activity, metabolic activity and 

expression were also assessed in a mouse and cellular model of NAFLD. Subjects with 

non-alcoholic steatohepatitis (NASH) had 2.4-fold higher plasma midazolam levels 

compared to controls. Plasma 4β-hydroxycholesterol was 51% and 37% lower than 

controls in subjects with simple steatosis and NASH, respectively. Fibrosis was associated 

with 57% lower plasma 4β-hydroxycholesterol levels than controls.  Furthermore, hepatic 

CYP3A4 mRNA expression in NASH was 69% lower than control livers. CYP3A4 gene 

luciferase activity in the livers of NAFLD mice was 38% lower than that of controls. 

Lipid-loaded Huh7 cells had a 38% reduction in CYP3A4 activity and 80% lower 

CYP3A4 mRNA expression compared to control.  CYP3A activity is reduced in human 

NAFLD in addition to mouse and in vitro cell models of the disease.  
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INTRODUCTION 

 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the 

Western world, affecting 20-35% of the general adult population, and 70-90% of obese 

individuals (Browning et al., 2004; Bedogni et al., 2005). Given its close association with 

the metabolic syndrome and increased risk of cardiovascular disease, many NAFLD 

patients are prescribed a variety of medications to manage these associated conditions 

(Stepanova and Younossi, 2012).  While the liver is the primary site of drug metabolism, 

little is known about the effect of NAFLD on this process.  With the current lack of 

approved pharmacologic treatments for NAFLD, much of the current focus of therapy for 

this condition has been in managing comorbid conditions.  If significant differences in 

drug metabolism are present in NAFLD, this may not only have implications for dosing 

and administration of currently used medications, but also for the development of new 

therapies targeting hepatic steatosis and fibrosis.  

 

There is a paucity of information on the influence of NAFLD on the in vivo activity of 

major hepatic drug metabolizing pathways. A key pathway involves cytochrome P450 3A 

enzymes (CYP3A4 and CYP3A5), which act in the intestine and liver. CYP3A4 is 

responsible for the oxidative metabolism of more than 50% of all drugs including those 

widely prescribed in NAFLD such as HMGCo-A reductase inhibitors (statins), calcium 

channel blockers, thiozolidinediones and sulfonylureas (Guengerich, 1999). Inter-

individual variability in hepatic CYP3A enzyme activity can reach 100-fold (Lin and Lu, 

2001). This highly variable enzyme activity has been largely attributed to environmental 
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factors (Burk and Wojnowski, 2004; Wilkinson, 2005) and genetic polymorphisms 

including reduced activity CYP3A4*22 (Wang et al., 2011) and the inactivating allele 

CYP3A5*3 (Kuehl et al., 2001).  

 

In the setting of cirrhosis, there is clear in vivo evidence for reduced hepatic CYP3A 

activity which contributes to decreased drug dose requirements (Verbeeck, 2008).  

However, in NAFLD with simple steatosis and NASH (non-alcoholic steatohepatitis), in 

vivo CYP3A activity has not been evaluated.  A small number of ex vivo studies using 

archived livers have been published but findings are conflicting; reporting increased 

(Niemela et al., 2000), decreased (Donato et al., 2006; Donato et al., 2007), or no change 

(Kolwankar et al., 2007; Fisher et al., 2009) in hepatic CYP3A4 protein expression in 

NAFLD. Moreover, those studies that noted decreased CYP3A4 protein expression 

differed with respect to whether CYP3A4 mRNA was also reduced (Niemela et al., 2000; 

Fisher et al., 2009).  In a study of donated human type 2 diabetic liver, where NAFLD has 

a prevalence of 50%, hepatic CYP3A4 expression was reduced (Dostalek et al., 2011). 

Taken together, a majority of studies to date suggest that NAFLD is associated with 

reduced hepatic CYP3A activity, however the data are heterogeneous and this finding has 

not yet been demonstrated in vivo. 

 

In this study, we directly examined CYP3A drug metabolism activity in patients with 

biopsy-proven NAFLD as well as both mouse and cell culture models of hepatic steatosis.  

We demonstrate, for the first time, that in vivo CYP3A activity is decreased in NAFLD. 
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MATERIALS AND METHODS 

 

In Vivo CYP3A Activity Phenotyping  

The short-acting benzodiazepine, midazolam (MDZ), is oxidatively metabolized by 

CYP3A4 and CYP3A5 (Gorski et al., 1994). MDZ pharmacokinetic phenotyping is a 

widely used method to assess in vivo CYP3A activity (Lin et al., 2001).  After an 

overnight fast, a group of 10 subjects with biopsy-proven NAFLD and a cohort of 20 

healthy control subjects collected from previous studies reported by Woolsey et al. 

(submitted) and Gong et al. (Gong et al., 2012), received an oral microdose (100 μg) of 

MDZ (1 mg/mL, Sandoz, Boucherville, QC) as an aqueous solution. Blood was collected 

3 hours after drug administration for plasma MDZ concentration analysis.  4β-

hydroxycholesterol (4β-OHC) is a cholesterol metabolite formed by CYP3A4/CYP3A5 

and an endogenous biomarker for in vivo CYP3A activity (Diczfalusy et al., 2012).  

Fasting plasma was obtained from the healthy control subjects (n=20) and subjects with 

biopsy-proven NAFLD (n=30) for 4β-OHC level analysis. Histologic NAFLD stage was 

categorized simple steatosis (SS) or NASH, according to the non-alcoholic fatty liver 

disease activity score (NAS), which includes steatosis (0-3), hepatic inflammation (0-3) 

and hepatocellular ballooning (0-2).  Patients were categorized as having NASH if NAS 

was ≥3 with a ballooning score of ≥1. SS was determined as total NAS of <3 or ≤3 with a 

ballooning score of 0. Hepatic fibrosis was scored separately (0 – 4) (no fibrosis = 0 and 

fibrosis ≥ 1).  Insulin resistance was calculated using the homeostasis model assessment 

(HOMA IR). These studies conformed to the ethical guidelines of the 1975 Declaration of 
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Helsinki and were approved by the Human Subjects Research Ethics Board at the 

University of Western Ontario. All study participants provided informed written consent. 

 

Genotyping   

Single-nucleotide polymorphisms (SNPs) associated with altered CYP3A activity were 

genotyped by TaqMan allelic discrimination assay (Applied Biosystems, Foster City, CA) 

for CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746), Peroxisome Proliferator Activating 

Receptor α (PPARα; NR1C1, rs4253728) and Cytochrome P450 Oxidoreductase POR*28 

(rs1057868). Patatin-like phospholipase domain-containing protein 3 (PNPLA3, rs738409) 

gene variation associated with hepatic steatosis was similarly determined.  

 

Human Liver Tissues  

Liver samples used for gene expression (mRNA) analyses were obtained by biopsy from 

subjects with NAFLD (n=17; mean age 46; 10 male, 7 female; 3 SS, 14 NASH) as 

reported by Beaton et al. (Beaton et al., 2013) while normal human liver samples (n=9, 

mean age 45, 3 male, 6 female) were obtained through the Liver Tissue Cell Distribution 

System (Minneapolis, MN, Funded by NIH Contract #N01-DK-7-0004 / 

HHSN267200700004C).  Control livers were chosen as those without hepatic steatosis 

after Oil Red O histological staining. 

 

Drug, Metabolite and Endogenous Biomarker Analysis 

Plasma and samples from cell culture studies were analyzed for levels of MDZ and its 

CYP3A-catalyzed primary metabolite, 1-hydroxymidazolam, by liquid chromatography-
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tandem mass spectrometry (LC-MS/MS) according to our previous report (Woolsey et al., 

submitted).   4β-hydroxycholesterol (4β-OHC) levels in plasma were measured after 

picolinic acid derivatization and LC-MS/MS analysis according to the method of Honda et 

al. (Honda et al., 2010) and detailed in our previous report (Woolsey et al., submitted). 

 

Animal Studies 

Female, 5 week old C57BL/6 mice were obtained from Jackson Laboratories (Bar Harbor, 

MA). Mice were fed a normal standard diet (2018 Teklad Global 18% protein rodent diet, 

Harlan Laboratories, Madison, WI) or a high-fat diet (TD.88137 adjusted calories diet 

42% from fat, Harlan Laboratories,) for 4 weeks. Human CYP3A4 reporter gene activity 

in liver was determined in mice after hydrodynamic, tail-vein delivery (25 μg of DNA in 2 

mL saline administered over 10 sec) of a CYP3A4 gene luciferase plasmid (CYP3A4-

XREM-Luc) or a promoterless reporter (pGL3 Basic, Promega, Madison, WI) with 

correction for transfection efficiency with a Renilla luciferase vector (2 μg, pRL-CMV, 

Promega).  The CYP3A4-XREM-Luc plasmid containing the proximal promoter (–

362/+53) and distal xenobiotic response element (XREM; –7836/–7208) inserted in pGL3 

Basic (Promega) was prepared previously (Tirona et al., 2003). Twenty-four hours post-

injection, livers were harvested and homogenized for analysis by Dual Luciferase Assay 

(Promega). Liver segments were fixed and embedded in paraffin for staining with 

Hematoxylin/Eosin and Trichrome or frozen in OCT for Oil Red O staining. This study 

protocol was approved by the University of Western Ontario Animal Use Subcommittee. 
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Cell Culture Studies  

 Huh7 human hepatoma cells (Japan Health Sciences Foundation Tokyo, Japan) were 

cultured in high glucose Dulbecco’s modified Eagle’s medium (Lonza, Walkersville, MD) 

with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 2 mM L-glutamine, 50 U/ml 

penicillin (Invitrogen), 50 μg/ml streptomycin (Invitrogen) and incubated at 37°C in 5% 

CO2. Prior to experiments, Huh7 cells were grown 3 weeks post-confluence with media 

changed routinely every 2 to 3 days. To induce steatosis, Huh7 cells were treated with 600 

μM fatty acids (2:1 ratio of oleic and palmitic acids, Sigma-Aldrich) in serum free media 

containing 1% fatty acid-free bovine serum albumin (Sigma-Aldrich) for 24 hours using a 

modified protocol (Sivertsson et al., 2010). Lipid accumulation was determined by nile red 

staining and confocal fluorescence microscopy. Cell viability was assessed 24 hours after 

lipid loading using colorimetric MTT assay. To determine CYP3A4 metabolic activity, 

Huh7 cells were exposed to 1 μg/mL of MDZ (ThermoFisher Diagnostix) in Krebs 

Henseleit Bicarbonate buffer (KHB, pH 7.4) supplemented with 12.5 mM HEPES and 5 

mM glucose. After a 3-hour incubation, cell culture media was collected for analysis of 1-

hydroxymidazolam concentration by LC-MS/MS as described above.  

 

Gene Expression Analysis 

RNA from liver samples and Huh7 cells was extracted using TRIzol (Invitrogen) and 

cDNA synthesized using multiscribe reverse transcriptase (Applied Biosystems, Carlsbad, 

CA) with random hexamers. RNA quality and concentration was determined using Agilent 

Bioanalyzer (RNA 600 Nano kit, Agilent, Santa Clara, CA) and NanoVue Plus 

Spectrophotometer (GE Healthcare Life Sciences, Baie d’Urfe, QC). Relative mRNA 
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expression of CYP3A4, CYP2E1, mCyp2e1, and mCyp3a11 were determined by SYBR 

green-based quantitative PCR (ABI Prism 7700, Applied Biosystems).  Primer sequences 

are: Human CYP3A4: 5'-CAGGAGGAAATTGATGCAGTTTT-3' (Forward) and 5'-

TCAAGATACTCCATCTGTAGCACAGT-3' (Reverse); Human CYP2E1: 5'- 

CCCAATCACCCTGTCAATTT-3' (Forward) and 5'-GACCACCAGCACAACTCTGA-3' 

(Reverse); Mouse Cyp2e1: 5'-CCTGGTGGAGGAGCTCAAAA-3' (Forward) and 5'-

TGTTGAAGAGAATATCCGCAATGA-3' (Reverse); Mouse Cyp3a11: 5'-

CTTTCCTTCACCCTGCATTCC-3' (Forward) and 5'-

CTCATCCTGCAGTTTTTTCTGGAT-3' (Reverse). Reactions were performed in 

triplicate for each sample and gene expression was normalized to 18S ribosomal RNA 

(TaqMan Gene Expression Assay, Applied Biosystems).  

 

Statistical Analysis 

Values are expressed as the mean ± SEM or Tukey boxplot. Differences between 

experimental groups was evaluated using an unpaired, two-tailed, t-test or a one-way 

ANOVA with Dunnett Test. Differences were considered significant at the p<0.05 level. 

All analysis was performed using GraphPad Prism Version 5.0 (GraphPad, La Jolla, CA).  

 

RESULTS 

 

CYP3A Activity and Expression are Decreased in NAFLD.  

We examined in vivo CYP3A activity using oral MDZ phenotyping and plasma 4β-OHC 

biomarker level analysis.  Control subjects (n=20) were tested with both MDZ and 4β-
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OHC tests.  MDZ phenotyping and 4β-OHC plasma level was determined in 10 and 30 

subjects with biopsy-proven NAFLD, respectively.  Subject demographics are summarized 

in Table 1. Neither healthy control nor NAFLD study subjects were taking CYP3A4 

interacting medications at the time of study participation (Supplemental Tables 1 and 2). 

All NAFLD subjects and 17 of 20 control subjects consented to genetic analysis. There 

were no significant differences in the frequencies of allele carriers associated with CYP3A 

activity, MDZ pharmacokinetics or plasma 4β-OHC levels among study groups (Table 1).  

We found mean MDZ concentrations were 2.4-fold greater (p <0.0001) in subjects with 

NASH (n=9) in comparison to control subjects (Fig. 1A). The single subject with simple 

steatosis had 2.5-fold higher MDZ levels than controls (Fig. 1A). This result suggests that 

MDZ was not as readily metabolized in NASH due to a decrease in CYP3A activity. 

NAFLD and healthy control subjects were also phenotyped for CYP3A activity using 

fasting plasma 4β-OHC level. NAFLD subjects had significantly lower mean 4β-OHC 

levels in comparison to control subjects (Simple Steatosis, 51% lower than control, p 

<0.001; NASH 37% lower than control, p <0.001) (Fig. 1B), indicating decreased CYP3A 

activity. We separately examined the influence of hepatic fibrosis, PNPLA3 genotype and 

HOMA IR on plasma 4β-OHC levels. There were lower 4β-OHC levels in the presence of 

NAFLD fibrosis in comparison to control subjects (43% of control, p<0.0001) (Fig. 1C). 

PNPLA3 genotypes are associated with histological severity of NAFLD (Sookoian and 

Pirola, 2011) and susceptibility to NASH (Zain et al., 2012).  In the NAFLD cohort, 

carriers of the risk PNPLA3 (rs738409) G allele tended to have lower 4β-OHC 

concentrations, although the association was not statistically significant (Supplemental 

Figure 3A). Furthermore insulin resistance, as assessed by HOMA IR, was not associated 
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with plasma 4β-OHC levels among participants with NAFLD (Supplemental Figure 3B). 

CYP3A4 mRNA expression level was determined in NAFLD biopsy samples and 

histologically normal, non-steatotic archived livers. There was 69% lower CYP3A4 

mRNA levels in NASH biopsies (n = 14) than control livers (n=9) (p = 0.059) (Fig 1D). 

The amount of CYP3A4 mRNA was 60% lower in biopsies with simple steatosis (n = 3) 

than control livers (n = 9), however this difference was not statistically significant (p = 

0.34) (Fig. 1D). In composite, results from both the MDZ and 4β-OHC phenotyping tests 

demonstrate that in vivo CYP3A activity is reduced in NAFLD. Fibrosis is associated with 

lower CYP3A enzyme function. Reduced in vivo CYP3A activity is associated with 

decreased hepatic CYP3A4 mRNA levels. 

 

Reduced CYP3A4 Transcriptional Activity in a Mouse Model of NAFLD.   

Female C57BL/6 mice were fed a high fat diet for 4 weeks to induce NAFLD. Simple 

steatosis was observed after H&E, trichrome and Oil Red O lipid staining of livers of mice 

fed a high fat diet while steatosis was absent in animals fed a normal diet (Fig. 2A). The 

livers of mice were in vivo transfected with a CYP3A4-XREM-Luc reporter plasmid or a 

pGL3 Basic control plasmid in conjunction with a normalizing Renilla luciferase vector, 

by hydrodynamic tail vein injection method. Hepatic CYP3A4 luciferase activity in the 

NAFLD mouse model was lower by 60% in comparison to mice on a normal diet (Fig. 

2C). These results demonstrate that hepatic steatosis causes reduced liver CYP3A4 

transcriptional activity in an in vivo model of NAFLD.  
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CYP3A4 Activity and Expression are Decreased in a NAFLD Cell Culture Model.  

Huh7 human hepatoma cells were incubated with and without fatty acids to induce 

steatosis. Lipid accumulation was confirmed using the neutral lipid stain, nile red (Fig. 3A, 

B). The fatty acid treatment did not to cause cytotoxicity up to concentrations of 600 μM 

as determined by MTT assay (Supplemental Figure 1).  Incubation of cells with MDZ (1 

μg/mL) resulted in the appearance of the CYP3A metabolite, 1-hydroxymidazolam, in the 

culture media. The levels of 1-hydroxymidazolam in the fatty-acid treated Huh7 cells were 

lower by 38% in comparison to control cells (Fig. 3C), indicating reduced CYP3A enzyme 

activity in experimental steatosis. Furthermore, there was a significant decrease (reduction 

of 80%) in CYP3A4 mRNA expression in steatotic cells in comparison to control cells 

(Fig. 3D).  These findings indicate that steatosis is associated with a reduction in CYP3A4  

mRNA expression leading to decreased enzyme activity in a cell culture model of 

NAFLD.  

 

DISCUSSION 

 

With the global prevalence of NAFLD rising (Loomba and Sanyal, 2013) it is expected 

that this disease will become the number one indication for liver transplant (Charlton et 

al., 2011).  As such, the need for effective drug therapy to prevent disease progression is 

vital. Unfortunately, little is known about the effect of NAFLD on drug metabolism 

capacity, oral bioavailability, systemic exposure and therapeutic response.  The strongest 

evidence supporting altered drug metabolism relates to the well-characterized induction of 

hepatic CYP2E1 expression and in vivo activity in NAFLD (Chalasani et al., 2003; Emery 
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et al., 2003). CYP2E1 induction has been associated with enhanced susceptibility to 

acetaminophen bioactivation (to its reactive metabolite) and hepatotoxicity (Michaut et al., 

2014). In the present study we also observed significantly increased CYP2E1 mRNA 

expression in both human NAFLD subjects and the cell culture model. In the mouse model 

of NAFLD a trend toward increased Cyp2e1 mRNA level was observed (Supplemental 

Figure 2). While there is evidence for CYP2E1 alterations in NAFLD, whether the 

expression and activity of the CYP3A subfamily are affected by NAFLD is not as clear. 

The in vivo activity of these primary drug metabolizing enzymes in NAFLD has not been 

previously reported. In this study we demonstrate that subjects with biopsy-proven 

NAFLD, phenotyped using an oral microdose of MDZ, have increased plasma MDZ 

concentrations in comparison to healthy control subjects (Fig. 1A). The validity of this 

simplified microdose and single time point sampling phenotyping strategy is supported by 

pharmacokinetic linearity of MDZ over a wide oral dose range (Halama et al., 2013) and 

strong correlation between the 3 hour plasma concentration with area under the 

concentration-time curve (Woolsey et al., submitted) (Lin et al., 2001). The observed 2.4-

fold higher midazolam exposure in NASH compared to healthy subjects indicates 

moderately reduced CYP3A activity given that the drug interaction with the potent 

CYP3A inhibitor, ketoconazole, results in a 16-fold increase in oral midazolam AUC 

(Tsunoda et al., 1999).  

 

We further assessed in vivo CYP3A activity by measuring plasma concentrations of 4β-

OHC, a product of CYP3A-mediated metabolism of cholesterol (Diczfalusy et al., 2012). 

NAFLD patients had significantly lower 4β-OHC levels than controls, again indicating a 
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decrease in CYP3A activity (Fig. 1B). Interestingly, CYP3A activity did not differ 

between NAFLD subjects with SS or NASH (p=0.4941) despite studies demonstrating 

marked reduction in CYP3A4 expression and metabolic function in cultured human 

hepatocytes treated with inflammatory cytokines (Abdel-Razzak et al., 1993; Muntane-

Relat et al., 1995). When examined independently from NAS, fibrosis, a marker of 

advanced NAFLD, was associated with significantly lower 4β-OHC levels when 

compared to control. 

 

Plasma 4β-OHC levels are sensitive to the effects of CYP3A4 induction by drugs such as 

anticonvulsants (Bodin et al., 2001).  However, the use of 4β-OHC as a biomarker for 

decreased CYP3A4 activity by enzyme inhibition with drugs may be limited due to the 

long half-life of this oxysterol, requiring weeks of inhibitor administration for reductions 

in plasma levels to become apparent (Josephson et al., 2008). In the context of disease 

effects on CYP3A4 activity, our results in NAFLD, as well as those reported for Crohn’s 

disease (Iwamoto et al., 2013), show that 4β-OHC may be a valid biomarker of reduced 

metabolic activity for chronic conditions.  Plasma 4β-OHC levels are a reflection of 

CYP3A4 activity in the liver as was demonstrated in a study of subjects treated with the 

enzyme inducer efavirenz (Meyer zu Schwabedissen et al., 2012).  Systemic levels of this 

biomarker were increased while no changes in intestinal CYP3A4 expression were 

observed. Our results implicate changes in liver CYP3A4 levels however, the contribution 

of intestinal CYP3A4 activity to plasma 4β-OHC concentrations in NAFLD has not yet 

been formally evaluated. 
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There are some limitations to this study.  Our findings of reduced CYP3A4 activity and 

expression in the mouse and cell culture models of NAFLD indicate that the observed 

increase in MDZ levels in NAFLD are a least partly a result of decreased hepatic activity.  

Larger pharmacokinetic studies using both oral and intravenous MDZ in NAFLD are 

required to define the metabolic changes that occur specifically in liver and intestine.  

 

For ethical reasons, liver biopsies could not be obtained from the control group to confirm 

absence of NAFLD. In this group, we considered anthropometric and serum biochemical 

indices for inclusion of healthy subjects into the control group. The average age of the 

control group was approximately 7 years younger than that of NAFLD subjects (Table 1).  

In our previous study of healthy subjects we found that MDZ oral clearance was only 

reduced by 3% for every 10-year increase in age (Woolsey et al., submitted), while others 

have reported no effect of age on clearance (Gorski et al., 2003). We therefore do not 

consider the age difference between groups a significant contributor to the reduced CYP 

expression and activity.  

 

To obtain further insight to the mechanisms of decreased in vivo CYP3A4 activity in 

NAFLD, additional experiments were performed in a diet-induced mouse NAFLD model. 

It is important to consider that CYP3A protein isoforms differ between rodents and 

humans.  Specifically, mice express 8 different active Cyp3a genes (Cyp3a11, Cyp3a13, 

Cyp3a16, Cyp3a25, Cyp3a41, Cyp3a44, Cyp3a57 and Cyp3a58) while adult humans 

express only 2 forms (CYP3A4 and genetically polymorphic CYP3A5) (Nelson et al., 

2004). Furthermore, there are clear distinctions between mouse and human CYP3A gene 
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regulation (Martignoni et al., 2006). Given the species difference in the expression and 

regulation of CYP3A genes, we delivered a CYP3A4 gene promoter firefly luciferase 

reporter into the livers of mice with experimental hepatic steatosis. The effectiveness and 

advantages of this strategy in an in vivo experimental model with intact liver to study 

CYP3A4 gene regulation is well-documented (Schuetz et al., 2002; Tirona et al., 2003). 

Decreased liver CYP3A4 luciferase reporter activity in the mouse NAFLD model suggests 

that in the in vivo milieu of simple steatosis, there is reduced CYP3A4 transcription (Fig. 

2C). For comparison, we examined the expression of the predominant mouse hepatic 

Cyp3a11 enzyme in the simple steatosis model and found a trend toward lower (20% ± 

6%, p = 0.10) mRNA expression level in mice on HFD (n = 6) than those on ND (n = 6). 

In the context of previous reports, results in mouse models of NAFLD have been 

heterogeneous with some demonstrating decreased (Yoshinari et al., 2006; Ghose et al., 

2011; Wahlang et al., 2014) or induced (Fisher et al., 2008; Spruiell et al., 2014) 

expression of Cyp3a11. Similarly, rat models of hepatic steatosis are conflicting with 

some reporting decreased Cyp3a expression (Leclercq et al., 1998) while others showing 

higher levels (Ghoneim et al., 2015).  

 

Lastly, we examined CYP3A4 activity in a cultured human hepatoma cell model of 

steatosis.  Huh7 cells were grown for weeks at confluence in these experiments because 

native expression and activity of CYP3A4 under these conditions is enhanced (Sivertsson 

et al., 2010). In fatty acid-induced steatotic Huh7 cells, we found a significant decrease in 

CYP3A4 activity similar to the results shown in NAFLD subjects in vivo (Fig. 3C).  

Reduced CYP3A4 activity was associated with decreased CYP3A4 mRNA levels (Fig. 
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3D), consistent with the findings of reduced CYP3A4 luciferase activity in the NAFLD 

mouse model.  

 

A probable mechanism for reduced CYP3A4 activity in NAFLD are the effects of 

inflammation and associated cytokines on hepatic drug metabolism gene expression 

(Abdel-Razzak et al., 1993; Muntane-Relat et al., 1995; Pascussi et al., 2000; Jover et al., 

2002).  Indeed, inflammatory infiltration occurs in simple steatosis and NASH together 

with increased hepatic expression of inflammatory cytokines (Gadd et al., 2014).  

Inflammatory cytokines, acting through nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), causes trans-repression of the pregnane X receptor (PXR), a 

central transcription factor regulating CYP3A4 expression (Gu et al., 2006; Zhou et al., 

2006). Moreover, PXR is down-regulated by inflammatory cytokines (Pascussi et al., 

2000) and its expression is reduced in human NASH (Bitter et al., 2014). Other 

mechanisms may be involved in he down-regulation of CYP3A4 in NAFLD. 

 

The clinical importance and drug development relevance of the current findings of 

reduced CYP3A activity in NAFLD are potentially significant and remain to be further 

explored. While CYP3A-metabolized medications such as some statins which are 

commonly prescribed in patients with this condition are safe, our finding that in vivo 

CYP3A metabolic activity is reduced in NAFLD leads one to ponder whether current drug 

dosing recommendations may need to be reevaluated in this population in order to ensure 

the best possible clinical outcomes for NAFLD patients with metabolic comorbidities.  

Indeed, we have recently found plasma 4β-OHC concentrations are associated with of 
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atorvastatin plasma levels during routine clinical care (DeGorter et al., 2013). Future 

investigations to determine the importance of altered drug metabolism in NAFLD together  

with studies to elucidate the molecular mechanisms involved will be required to provide 

additional insights into therapies and management of this important cause of liver disease.  
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FIGURE LEGENDS 

 

Figure 1. CYP3A4 activity and expression in NAFLD. (A) Plasma MDZ concentrations 3 

hours post oral MDZ microdose (100 μg) in healthy control (n=20) and biopsy-proven 

NAFLD subjects (Simple Steatosis, SS, n=1; NASH, n=9). Shown as Tukey boxplots with 

median (line), 25 to 75 percentile (box) and minimum / maximum values (whiskers).  

Statistical analysis by two-tailed t-test (control vs. NASH). (B) Fasting, plasma 4β-OHC 

concentrations in control (n=20) and NAFLD subjects (Simple Steatosis, SS, n=7; NASH, 

n=23). Statistical analysis by one-way ANOVA followed by Dunnett test. (C) Plasma 4β-

OHC concentrations in healthy controls (n=20) and NAFLD subjects according to 

histological assessment of fibrosis (No Fibrosis, n=6; Fibrosis, n=24). Statistical analysis 

by one-way ANOVA followed by Dunnett test. (D) CYP3A4 mRNA expression in 

archived normal liver tissue (n=9) and NAFLD liver biopsy samples (Simple Steatosis, 

SS, n=3; NASH, n=14) compared using one-way ANOVA followed by Dunnett test. Bars 

represent mean with standard error of mean. Gene expression was normalized to a 

commercial normal pooled human liver RNA sample. ***p<0.0001; ***p<0.001.   

 

Figure 2. CYP3A4 transcriptional activity in NAFLD mouse model. (A) Representative 

H&E, Trichrome and Oil Red O staining of liver sections from adult mice fed a normal 

diet (ND) or high fat diet (HFD) for 4 weeks. Scale = 20 μm  (B) Hepatic CYP3A4 

luciferase reporter activity in mice after a normal diet (n=9) or high fat diet (n=5). Values 

are presented as mean and standard error of mean. *p<0.05 (two-tailed t-test).  
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Figure 3. CYP3A4 activity and expression in a cultured human hepatoma cell (Huh7) 

NAFLD model. (A) Localization and accumulation of lipids in control and 24 hour, free 

fatty acid treated (600 μM; oleate:palmitate, 2:1) Huh7 cells using Nile Red lipid 

fluorescent stain. Scale = 50 μm. (B) Quantitative analysis of lipid accumulation within 

control and fatty acid (FA) treated Huh7 cells by image analysis (ImageJ). (C) 

Accumulation of 1-hydroxymidazolam in the cell culture media after a 3 hour incubation 

with the midazolam (1 μg/mL) in control (n=6) and fatty acid (FA) treated cells (n=6). (D) 

Relative CYP3A4 mRNA expression in control (n=9) and fatty acid (FA) treated Huh7 

cells (n=9). Values are presented as mean and standard error of mean: ***p<0.0001; 

**p<0.001 (two tailed t-test).  
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TABLES 

 

Table 1.  Subjects phenotyped for CYP3A activity with MDZ and 4β-OHC tests. 
 

 

1 NASH was defined as NAS score [steatosis (0-3), lobular inflammation (0-3) and hepatocellular ballooning 
(0-2)] ≥ 3 plus a hepatocellular ballooning score ≥ 1; Simple Steatosis was defined as NAS < 3 or NAS ≤ 3 
with a ballooning score of 0. 

2  Degree of fibrosis was categorized by histologic fibrosis score (0-4); No fibrosis = 0; Fibrosis ≥ 1. 
3 Number of non-carriers/heterozygous carriers/homozygous carriers.  For Control group, genotype was of 

available for 17 of 20 subjects. 
 

 
Characteristic 

Control 
MDZ/4β-OHC 

(n=20) 

NAFLD 
MDZ 

(n=10) 

NAFLD 
4β-OHC 
(n=30) 

Age (Range) 43 (28-58) 51 (27-63) 49 (27-69) 

Sex  

      Male 

      Female 

 

7 

13 

 

5 

5 

 

19 

11 

BMI (Range) 

HOMA IR (Range) 

24 (19-30) 

- 

35 (28-45) 

3.5 (1.7-6.5) 

33 (23-45) 

3.1 (1-9.6) 

NAFLD Stage 1     

      Simple Steatosis  - 1 7 

      NASH - 9 23 

Fibrosis 2     

      No Fibrosis  - 1 6 

      Fibrosis  - 9 24 

Allele Carrier Status 3 

     CYP3A4*22 

     CYP3A5*3 

     PPARα (rs4253728) 

     POR*28 

     PNPLA3 (rs738409) 

 

(17/0/0) 

 (0/1/16) 

 (12/5/0) 

 (10/6/1) 

- 

 

(9/1/0) 

(0/2/8) 

 (6/4/0) 

 (5/5/0) 

 (2/7/1) 

 

 (24/6/0) 

 (0/7/23) 

 (16/12/2) 

 (13/14/3) 

 (9/14/7) 
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