Challenging Cases

Manon Auger M.D., F.R.C.P. (C)
Professor, Department of Pathology
McGill University
Director, Cytopathology Laboratory
McGill University Health Center

Case #1
FNA of nodule in left lobe of thyroid in 67 y.o. woman
DDx of elongated cells in thyroid FNAs

- Papillary Thyroid Carcinoma
 - Tall Cell Variant
 - Columnar Variant
- Medullary Thyroid Carcinoma
- Anaplastic Thyroid Carcinoma
- Metastasis
 - Melanoma
 - Colonic Adenocarcinoma
- Cyst-lining cells
- Ciliated glandular cells from
 - Thyroglossal duct cyst
 - Contaminants from needle tract (trachea)

Cytological Dx
Papillary Thyroid Carcinoma
Comment: The cytological features raise the possibility of the Tall Cell Variant

Final Dx
PTC, Tall Cell Variant
Columnar Cell Variant, PTC

- One of the least common variants of PTC, and occurs primarily in males
- Characterized by columnar cells with hyperchromatic, oval, and pseudostratified nuclei and supranuclear or subnuclear cytoplasmic vacuoles
 - reminiscent of colonic adenoma or secretory-type endometrium

Metastatic Colonic Adenocarcinoma

Columnar Cell Variant, PTC

- Clinico-radiological correlation and/or judicious use of a limited immunopanel including thyroglobulin can solve the problem in difficult cases
- Other thyroid markers such as TTF-1 and PAX8 are also expressed in lung and gynecological carcinomas, respectively, while the intestinal marker CDX-2 is expressed in up to 50% of CCV
- The \textit{BRAF}^{V600E} mutation, which is found in one-third of CCV cases may also be found in a subset of these metastatic carcinomas
Cyst-lining cells
Immunocytochemistry

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Thyroglobulin</th>
<th>TTF1</th>
<th>Calcitonin</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MTC</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>CEA+</td>
</tr>
<tr>
<td>Anaplastic Thyroid Ca</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>Chromogranin</td>
</tr>
</tbody>
</table>

Tall Cell Variant, PTC

- The most common aggressive variant of PTC (1-13%)
- Up to 90% of TCV have the BRAF^{V600E} mutation
- TERT promoter mutations are also significantly more prevalent in TCV (31%) compared to conventional PTC (<10%)
 - TERT promoter mutations play an important role in cellular immortality and tumorigenesis by increasing telomerase activity

Tall Cell Variant, PTC

- Clinico-pathological studies have shown that >10% of tall cell features within a PTC is already associated with an adverse clinical outcome
 - therefore, the identification of tall cell features should be mentioned, whether it is on thyroid FNA prior to surgical treatment or on final pathology reports

Case #2

FNA of nodule in right lobe of thyroid in 69 y.o. woman
Cytological Dx
Follicular Neoplasm, Hürthle (oncocytic) type

Final diagnosis
Follicular adenoma, Hürthle (oncocytic) type
DDx for Hürthle cell lesions

- Hürthle cell metaplasia in non-neoplastic lesions
 - Nodular goiter
 - Lymphocytic thyroiditis
- Hürthle cell neoplasm
- Hürthle cell metaplasia in neoplastic lesion
 - Papillary Thyroid carcinoma
 - Focal oncocytic changes: common
 - Oncocytic variant
 - Warthin-like variant

Follicular neoplasm, Hürthle cell (oncocytic) type - cytological features

- Moderately to markedly cellular specimens
 - Exclusively (or almost exclusively) composed of Hürthle cells
 - Typically with prominent nucleoli
 - Arranged as single cells and/or syncytial or microfollicular pattern and/or trabeculae

FNA biopsy of Hürthle cell lesions of the thyroid gland-- a cytomorphologic study of 139 cases with statistical analysis

- Evaluated 14 cytological features of benign HCL and HCN
- Cytological features statistically significant

<table>
<thead>
<tr>
<th>UNIVARIATE ANALYSIS</th>
<th>SLR ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-macrofollicular</td>
<td>Non-macrofollicular</td>
</tr>
<tr>
<td>Absence of colloid</td>
<td>Absence of colloid</td>
</tr>
<tr>
<td>No inflammation</td>
<td>No inflammation</td>
</tr>
<tr>
<td>Transgressing BV</td>
<td>Transgressing blood vessels</td>
</tr>
<tr>
<td>>90% Hürthle cells</td>
<td></td>
</tr>
<tr>
<td>>10% single cells</td>
<td></td>
</tr>
</tbody>
</table>
Colloid nodule/nodular hyperplasia

Hurthle cell lesion/neoplasm

Lymphocytes

Microfollicles/dyscohesion

Hashimoto thyroiditis/chronic lymphocytic thyroiditis

Colloid, variably sized follicles/sheets

Hurthle cell metaplasia in non-neoplastic lesions

Papillary Thyroid Carcinoma, oncocytic variant versus Hürthle cell neoplasm
FNAC DDx oncocytic neoplasms

<table>
<thead>
<tr>
<th>FNA Features</th>
<th>Oncocytic Variant PTC</th>
<th>Hurthle Cell Neoplasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Inclusions</td>
<td>50%</td>
<td>12%</td>
</tr>
<tr>
<td>Nuclear Grooves</td>
<td>80%</td>
<td>12%</td>
</tr>
<tr>
<td>Prominent Nucleoli</td>
<td>Absent</td>
<td>57%</td>
</tr>
</tbody>
</table>

FNHCT Management and 2015 ATA guidelines

- Diagnostic surgical excision (lobectomy) is the long-established standard of care for FNHCT
- After consideration of clinical and US features, molecular testing may be used to supplement malignancy risk assessment data instead of proceeding directly to surgery
 - However, the accuracy of molecular testing may be lower for FNAs of oncocytic lesions
 - There is an increased rate of “suspicious” results in benign oncocytic lesions using the Afirma GEC
 - up to 1/3 of FNHCT have a negative GEC analysis and can be spared surgery
- Mutational analysis in general unhelpful to distinguish Hurthle adenoma from CA
- RET/PTC rearrangements and RAS mutations are seen in both
- PAX8/PPARY are rare in Hürthle cell CA