Combined Infectious Diseases and Microbiology/Immunology Educational Retreat

The Departments of
MICROBIOLOGY & IMMUNOLOGY
And
MEDICINE/DIVISION of INFECTIOUS DISEASE

May 21-22, 2015
Oakwood Inn
Grand Bend, Ontario
Combined Infectious Diseases and Microbiology/Immunology Educational Retreat

(This event is an Accredited Group Learning Activity (Section 1) as defined by the Maintenance of Certification program of The Royal College of Physicians and Surgeons of Canada and approved by Continuing Professional Development, Schulich School of Medicine & Dentistry, Western University (# hours). Each participant should claim only those hours of credit that he/she actually spent participating in the educational program.)

This program has no commercial support.

Overall learning objectives for this event:
● Participants will increase their knowledge of host/pathogen relationships, as well as the epidemiology/pathogenesis of infectious diseases.

Learning objectives related to specific sessions:
● Each plenary session will include brief presentations from Research Faculty and Physicians who are working in mutual areas of interest.
● From presentations that showcase models of successful collaborations, participants will learn how to establish and maintain productive collaborations.
● Other presentations will include Research Faculty and Physicians with mutual areas of interest, from which the meeting participants can learn of available opportunities to establish new collaborations.
● Research poster presentations will provide the opportunity to learn of the full scope of research projects that are being conducted in Clinical and Research laboratories.

Thursday May 21, 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900-0920</td>
<td>Chairs remarks - Eric Arts & Mike Silverman</td>
</tr>
<tr>
<td>0920-0945</td>
<td>Carole Creuzenet: Helicobacter pylori gastric infections</td>
</tr>
<tr>
<td></td>
<td>Paul Adams: Microbiology / Immunology / Gastroenterology: Fusion or Confusion?</td>
</tr>
<tr>
<td>0945-1010</td>
<td>John McCormick & Tina Mele: Can superantigen profile dictate poor outcome in S. aureus sepsis?</td>
</tr>
<tr>
<td>1010-1030</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>1030-1100</td>
<td>Lillian Barra: Autoantibodies in the accelerated atherosclerosis of Rheumatoid Arthritis.</td>
</tr>
<tr>
<td>1100-1130</td>
<td>Vaccine Trials and Travails</td>
</tr>
<tr>
<td></td>
<td>Marina Salvadori: National Advisory Committee on Immunization</td>
</tr>
<tr>
<td></td>
<td>Yong Kang: From Bench to Bedside in HIV Research and Vaccine Trials</td>
</tr>
<tr>
<td></td>
<td>Jamie Mann: Preclinical Evaluation of an HIV Latency Reversal Strategy</td>
</tr>
<tr>
<td>1130-1300</td>
<td>Lunch and networking</td>
</tr>
<tr>
<td>1300-1430</td>
<td>Group Social Activities</td>
</tr>
<tr>
<td>1445-1615</td>
<td>Student and faculty posters (refreshments at 3.00 pm)</td>
</tr>
<tr>
<td>1700-1800</td>
<td>Keynote Speaker: Amanda Lewis - Vaginal villains in action: Functional and translational studies of vaginal bacteria that contribute to urogenital disease.</td>
</tr>
<tr>
<td>1800-1900</td>
<td>Dinner</td>
</tr>
<tr>
<td>1900-2130</td>
<td>Working Groups</td>
</tr>
<tr>
<td></td>
<td>Group 1. Forging new partnerships in clinical and basic research. (Chaired by Drs Marina Salvador and Martin McGavin)</td>
</tr>
<tr>
<td></td>
<td>Group 2. Building a roadmap for recruitment. (Chaired by Drs Eric Arts and Michael Silverman)</td>
</tr>
</tbody>
</table>
Group 3. How can we be prepared to respond to new research funding opportunities? (Chaired by Drs Bhagi Singh and David Heinrichs).

Friday May 22, 2015

0730-0900 Breakfast
0900-1015 Reports from Working Groups and discussion
1015-1045 Coffee Break
1100-1125 Martin McGavin, Sameer Elsayed - Epidemiology of *Staphylococcus aureus* in Hospital infections: opportunities for clinical interactions
1125-1200 Gregor Reid, Jeremy Burton, Mike Silverman - The enteric microbiome and potential for Microbial transplantation in the management of metabolic syndrome
1200-1230 Rod DeKoter: The Molecular Genetics of B Cell Acute Lymphoblastic Leukemia
Doug Fraser: Human tissue collection and research collaborations
1230-1400 Translating to therapy luncheon: Delivering the medicine of the future will depend on partnerships between researchers, clinicians, and industry. This luncheon will bring together stakeholders from the London area to promote local innovation and progress.
1400-1440 Steve Kerfoot, Sarah Morrow, Marcelo Kremenchutzky - Multiple Sclerosis
1440-1520 Eric Arts and Mike Silverman: Hepatitis C Study.
Sasan Hosseini: CMV Infection in Transplant Patients
1520-1600 Joe Mymryk: Human papillomavirus in the oral cavity: An epidemic of virally induced oropharyngeal cancer.
Jimmy Dikeakos HIV-1 Nef: From Trafficking to Pathogenesis
Steve Barr: A clinical and basic research collaboration reveals novel insights into the retroviral Integration landscape: implications for retroviral gene therapy
1600-1610 Completion of evaluation forms
1610-1640 Chairs’ concluding remarks

Posters:
1. Joseph Zeppa: Vaccine Approaches Targeting Colonization by *Streptococcus pyogenes*
2. Heba Barnawi: Structural and catalytic studies of the heptose modifying enzymes in *Campylobacter jejuni*
4. Patrick Lac: The role of homocitrulline in the pathogenesis of Rheumatoid Arthritis
5. Colin Venner: HIV-1 Group M Subtypes Display Differential Rates of CD4 T-Cell Decline
6. Aaron Johnson: Subtype specific differences in HIV-1 Nef-mediated receptor downregulation
7. Brennan Dirk: Viral BiFC: A Novel Tool to Study Intracellular Vesicular Trafficking Pathways
8. Ashish Patel: Analyzing the effect epicutaneous peptide treatment to induce tolerance to citrullinated proteins in DR4tg mouse models for Rheumatoid Arthritis
9. Holly Laakso: SbnI is a novel transcription factor in *Staphylococcus aureus*
10. Emily Pawlak: Exploring the role of membrane trafficking regulator sorting nexin proteins in HIV-1 Nef MHC-I down regulation

11. Lauren Solomon: Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line

12. Courtney Meilleur: The effect of superantigen exposure on the CD8+ T cell response to Influenza A virus

14. Ron Flannagain: Phagocytosed Staphylococcus aureus withstand phagolysosomal killing and induce macrophage apoptosis to mediate phagocyte escape and dissemination

15. Arthi Rajamohan: Are Homocitrullinated Lipoproteins Involved in the Pathogenesis of Rheumatoid Arthritis-Associated Atherosclerosis?

17. Julie Kaiser: Control of growth and virulence of Staphylococcus aureus by branched chain amino acid transporters

18. Jessica Sheldon: A tale of two staphylococcal citrate synthases

19. Ryan Shaler: The contribution of mucosally associated invariant T cells to the generation superantigen induced toxic shock syndrome

20. Arash Memarnejadian: Quantification of alloantibody-mediated cytotoxicity in vivo

21. James Schneider: Induction of a fatty acid efflux mechanism in Staphylococcus aureus resistance to unsaturated free fatty acids

22. Heba Alnaseri: Identification of farRand farEas a Regulator and Effector of Staphylococcus aureus Resistance to Antimicrobial Fatty Acids

23. Amanda Evans: Elucidating the signaling pathway of MerTK in efferocytosis and its contribution to autoimmunity and chronic inflammation

24. Najwa Zebian: Sbe1 in protein glycosylation and capsule synthesis

25. Peter Szabo: Staphylococcal superantigens trigger rapid human IL-17A production by a novel population of memory T cells

29. Melissa Loyzer: Elucidating the molecular mechanism behind the adaptive resistance of Staphylococcus aureus to unsaturated free fatty acids

30. Maryam Khodai-Kalaki: Genome wide profiling of AtsR/AtsT regulon in Burkholderia. cenocepacia by comparative ChIP-Seq and microarray analysis

Microbiology & Immunology Faculty Research Interests

Eric Arts
Dr. Eric J Arts is Chair and Professor of the Department of Microbiology and Immunology, Western University which is also the same department where he received his BSc (Hon) in 1990. His translational infectious disease research program started during his PhD degree in the Department of Microbiology and Immunology at McGill University under the supervision of Dr. Mark Wainberg. During his PhD and his subsequent post-doctoral studies at Case Western Reserve University (CWRU) in Cleveland, Ohio, his research examined the molecular mechanisms of antiretroviral drugs and of HIV resistance to these drugs. He joined the faculty in the Division of Infectious Diseases, Department of Medicine, CWRU in 1997 and started a new research program on HIV-1 pathogenesis and evolution in the global epidemic. These studies involved setting up a new clinical and molecular virology laboratory in Kampala, Uganda as well as collaborations with HIV clinicians around the world. His laboratory in Uganda processed and performed over 20,000 HIV RNA loads in plasma and CD4 T cell subset analyses, over 10,000 drug resistance tests, and maintains a sample repository on over 300 patients from a 10 year cohort study in Uganda and Zimbabwe. Dr. Arts and his colleagues have developed new technologies to analyze HIV and HepCV drug resistance, tests which are now approved for clinical use in the US. He is also involved in various preventative and therapeutic vaccine developments.

Stephen Barr
The Barr lab studies the molecular mechanisms by which viruses replicate, with a focus on HIV and other retroviruses. We have expertise in studying the mechanism of integration of viruses into a variety of host genomes. We are well-equipped to survey the genomic landscape of integrated retroviruses, non-retroviruses and gene therapy vectors. We also study the mechanisms of virus particle production and innate host defenses that target virus particle production. In particular, we have expertise in evolutionary positive selection, structural/functional analyses of SNPs, nuclear RNA export, virus assembly/budding and the host interferon response.

Lillian Barra
Dr. Lillian Barra is an Assistant Professor in the Department of Medicine, Division of Rheumatology at the Schulich School of Medicine and Dentistry. She completed her M.D. and Postgraduate training in Internal Medicine and Rheumatology at the University of Western Ontario. She completed her Masters of Public Health at Harvard University.
Research interests include investigating the pathogenesis of autoantibodies in Rheumatoid Arthritis-associated cardiovascular disease using mouse models, biomarkers in pre-rheumatic disease, as well as epidemiological and health services research in vasculitis. She is also a member of the administrative board of CanVasc, a national network aimed at establishing research and educational programs in vasculitis.

Jeremy Burton
We conduct research on the role of microbes in various human conditions. Our primary focus is the microbiome which influences urological conditions. The microbiome at distal sites is now the most intriguing, as it is thought to have an influence on systemic health well beyond the primary mucosal sites they occupy.

Ewa Cairns
Our laboratory is interested in rheumatic autoimmune diseases. Specifically, our current research focuses on the pathogenesis of Rheumatoid Arthritis (RA). We are studying the role of MHC class II molecules as well as auto-antigens (e.g.citrullinated proteins) in the development of this disease. Our research is performed using human RA clinical specimens and humanized (MHC class II) tg mice as animal model for RA.
Lisa Cameron
Our laboratory is focused on understanding how naturally occurring genetic variation influences development and trajectory of inflammatory disease. Her research relies on expertise in the areas of cellular and molecular immunology, functional genetics/genomics and translational science, including patient recruitment and clinical characterization. Dr. Cameron's work on CRTh2, a prostaglandin D2 (PGD2) receptor expressed by Th2 cells, has shown that single nucleotide polymorphisms (SNPs) in CRTh2 are associated with increased frequency of allergic conditions including asthma due to elevated CRTh2 expression and function. Dr. Cameron is also studying the role of CRTh2 in severe asthma and whether environmental factors such as diet and viral infection may interact with CRTh2 and its variants to modulate disease susceptibility and symptoms. Techniques used to perform this research include: i) isolation and culture of primary human T cells, ii) flow cytometry, iii) molecular cloning, iv) reporter assays, v) EMSA and ChIP, vi) RNA/DNA isolation and qRT-PCR, vii) microarray analyses, viii) patient recruitment and database management/analysis.

Carole Creuzenet
The Creuzenet lab is focusing on novel proteins from the human bacterial pathogen Helicobacter pylori that could play a role in immunomodulation, favor chronic gastric inflammation and support bacterial persistence. We are studying their effects on cytokine production in various cell types (gastric cells, immune cell lines and dendritic cells freshly derived from human blood) and in human gastric explants. We are also investigating their effects on gastric colonization, gastric inflammation and gastro-intestinal microflora in mice, using wild-type and IL10 knockout mice. We are also studying their mechanism of secretion in the hope of using a two pronged approach for therapeutic use of our data: inhibition of protein activity as well as of secretion. Other interests focus on the role of protein glycosylation and lipopolysaccharide or capsule synthesis in virulence in Helicobacter pylori and Campylobacter jejuni.

Greg Dekaban
Dr. Dekaban's research is focused on two areas: (1) Vaccine research is focused on developing novel vaccine vectors that carry immunomodulatory genes or utilize dendritic cell-based vaccines that result in prime-boost vaccine regimens that yield strong cell-mediated immune responses. This research is aimed at developing improved vaccines for HIV/AIDS and cancer. (2) Develop novel acute anti-inflammatory treatments for spinal cord injury based on understanding the mechanisms at the cellular and molecular level that control inflammation in the injured spinal cord.

Rod DeKoter
Transcription factor proteins positively or negatively regulate gene expression in the nucleus of cells. Our laboratory studies transcription factors that regulate gene expression in the immune system. There are currently two areas of investigation in our laboratory. First, we are investigating how E26-transformation specific (Ets) family proteins regulate genes involved in B cell receptor (BCR) expression and signal transduction. Misinterpreted BCR signaling can lead to a failure of central tolerance and cause autoimmune disease. Second, we are investigating how the Ets protein PU.1 regulates gene expression in myeloid cells. Reduced PU.1 levels can cause Acute myeloid leukemia (AML). We have generated mouse models for studying the consequences of reduced PU.1 levels in vivo and are working to identify key target genes responsible for causing disease.

Jimmy Dikeakos
In addition to the virally encoded enzymes required for replication and assembly, HIV-1 expresses a collection of accessory proteins that lack intrinsic enzymatic activity but which are essential for disease pathogenesis by dysregulating host cell enzymatic activities to counterattack the host antiviral response and promote virus replication. In particular, the HIV-1 accessory protein Nef is required for the efficient onset of AIDS following HIV-1 infection. Nef modifies the host cellular environment in many ways, including alteration of T cell activation, modulation of apoptotic and autophagic pathways, as well as disrupts the intracellular trafficking of MHC-I and other cell surface molecules of helper T cells and macrophages. Our laboratory is interested in the various interactions between Nef and host cellular partners and how these interactions modulate membrane trafficking pathways to evade the immune system.
Lakshman Gunaratnam
The laboratory of Dr. Gunaratnam is studying the potential role of kidney injury molecule-1, a protein that is expressed by the kidney tubular epithelial cells soon after injury, in regulating the innate immune response and in preventing rejection. By uncovering the detailed mechanisms that enable kidney epithelial cells to control early inflammation following transplant surgery, we hope to identify specific therapeutic strategies to increase the lifespan of transplanted kidneys.

Mansour Haeryfar
My research addresses two major themes. The first is to understand CD8+ cytotoxic T cell responses and to improve them, both quantitatively and qualitatively, in viral infections and cancer. We use mouse models of flu infection and prostate cancer. We also collaborate with clinicians treating patients with kidney cancer or liver metastases of colorectal carcinomas. The second component of my research is focused on invariant natural killer T (iNKT) cells, a rare but extremely potent subset of lymphocytes with unique reactivity to glycolipid antigens and impressive immunoregulatory functions. We study their activation requirements,signaling pathways and immunotherapeutic potentials in a wide variety of conditions including but not limited to viral infections, cancer, transplant rejection/tolerance and sepsis.

David Heinrichs
Staphylococcus aureus creates tremendous burden on health care systems in Canada and around the world. It is associated with significant human infectious morbidity and mortality. It is very worrisome that not only is *S. aureus* uniquely able to infect virtually any tissue or organ in the body, but the spread of multidrug resistant strains has reached an epidemic state and a vaccine against this pathogen does not exist. The overarching direction of the research program is to understand critical aspects of the *S. aureus*:host relationship, including the ability of *S. aureus* to counter the host's attempts to starve microbes of key nutrients such as amino acids and divalent metals, and to survive killing by professional phagocytes like macrophages.

Bryan Heit
Phagocytes (macrophage and dendritic cells) play a central role in our bodies immune defences. The Heit lab is interested in the mechanisms by which these cells take up pathogens (phagocytosis) and dead/dying cells (efferocytosis), and how these very different targets are processed by phagocytes. We are also interested in how these processes impact the development of pathological conditions such as athiersclerosis, autoimmunity and cancer.

Tony Jevnikar
Dr. Jevnikar's laboratory is focused on epithelial and endothelial cell injury and the regulation of cellular death by as a means to promote transplant allograft survival. While there are a number of pathways that mediate cell death, regulated forms of death have the capacity to be regulated by fusion proteins, RNA silencing and small molecules, and are thus of clinical interest. Recently, the Jevnikar lab was the first to describe the role of regulated necrosis (necroptosis) within donor organs in decreasing inflammation and promoting survival post transplant. As well members of this laboratory and collaborators have been studying novel cytokines such as IL37 to attenuate or eliminate ischemia repercussion injury that invariably occurs post transplant in donor organs. Novel and costly reagents may be created in clinically feasible quantities using novel expression systems we have developed with genetically altered plants – another unique aspect of this laboratory. Collectively these areas of interest bridge the interface between innate and adaptive immunity, and the dynamic relation that exists between donor organ responses and recipient immunity. The lab is interested in transplantation related studies that have high translational potential which is a strength of this translational research group.

Yong Kang
We are working on the molecular biology of several RNA viruses. Our ultimate goal is to control viral diseases. We are taking two approaches: the first approach is the development of efficacious vaccines against various human viral diseases including AIDS, hepatitis and hemorrhagic fever , and the second approach is the development of viral-specific antiviral therapeutic agents by using state-of-the-art technologies of genetic engineering and biotechnology. For the development of antiviral therapeutic agents, we have been investigating the molecular mechanism of homologous viral interference mediated by defective interfering particles using the vesicular stomatitis virus system and the viral reverse genetics.
Steven Kerfoot
T cells and B cells are tasked with targeting and regulating immune responses. When this goes wrong, autoimmune disease can result. Multiple Sclerosis is an autoimmune disease that targets the central nervous system. We study the mechanisms by which B and T cells drive chronic inflammation of the brain and spinal cord. These cells move and interact with each other within lymphoid tissue, where immune responses originate, as well as within the inflamed tissue. We visualize these interactions to understand their consequences and how they contribute to disease.

Sung Kim
The innate immune system provides initial protection from invading microbes through antimicrobial and proinflammatory responses. Macrophages are key innate immune cells, directly killing pathogens and orchestrating immune responses through releasing inflammatory cytokines. The overall research focus of the KIM LAB is to unravel the mechanisms of host innate immune cells in interacting with various microbes including bacterial and viral pathogens, and probiotics. Epigenetics plays key roles in macrophage activation, differentiation and tolerance. Among several epigenetic mechanisms, modifications of the N-terminal regions of histones by phosphorylation, methylation and acetylation dynamically orchestrate chromatin structure and regulate gene expression. Currently, Dr. Kim is studying the histone acetylation-mediated epigenetic reprogramming in inflammatory responses and cell death. His research aims to develop novel therapeutic tools and strategies for anthrax, inflammatory bowel diseases, sepsis and cancer.

Jamie Mann
Dr. Jamie Mann received his PhD in Immunology from the University of Strathclyde and then worked as a postdoctoral research scientist at Imperial College (UK) and Case Western Reserve University (USA). Throughout his scientific career, Dr. Mann has been involved in the development of novel vaccination strategies, including both prophylactic and therapeutic HIV-1 approaches. These have taken the form of microparticle and nanoparticle formulations, DNA vaccine delivery, virus like particles, adjuvants, receptor targeted delivery, electroporation and topical mucosal vaccination. More recently, Dr. Mann has managed HIV-1 cure studies, evaluating methods to eliminate the latent viral reservoir. These are multi-center studies involving close collaborations with Imperial College London, University of Montreal, Vaccine Research Centre (NIAID), and Tulane National Primate Research Center.

John McCormick
Our major research focus includes a detailed structural and functional characterization of a group of potent "superantigen" toxins produced by the notorious human pathogens *Streptococcus pyogenes* and *Staphylococcus aureus*. Our goals include the development of novel inhibitors for these toxins and harnessing their properties for immunotherapeutic agents. We are also interested in host-pathogen and interspecies bacterial communication systems. This work includes communication between pathogens and commensal or probiotic organisms, and we are utilizing proteomic and in vivo expression technology systems to achieve these goals.

Martin McGavin
Staphylococcus aureus can establish asymptomatic nasal carriage in approximately 15-25% of the human population, but is also a successful pathogen in several different guises, including (i), hospital associated multiply antibiotic resistant *S. aureus* (HA-MRSA); (ii), community associated and hyper-virulent methicillin resistant CA-MRSA; and (iii), community associated hyper-virulent methicillin-susceptible CA-MSSA. My research is aimed at understanding how secreted virulence factors, including serine- cysteine- and metalloproteases promote a rapid transition between the colonization and invasion phases of infection, and modify the host inflammatory response. From a population biology perspective, we are also identifying strains of *S. aureus* that specialize in chronic persistent infection, as compared to severe acute infections. This will allow us to better understand how *S. aureus* can control or evade the host inflammatory response, and possibly to understand how it may adapt and evolve in response to our efforts to control it with antibiotics.
Joe Mymryk
Our research interests are related to adenovirus and human papillomavirus (HPV), two small DNA tumor viruses. On the basic side of research, we are interested in viral reprogramming of host cell gene expression, which leads to altered growth of the infected cell, evasion of the immune response and enhanced virus production. On the clinical side of our research, we interact with head & neck surgeons in the Department of Otolaryngology to try and understand why some HPV dependent head and neck cancers respond poorly to treatment.

Gregor Reid
Our group (Reid, Burton, Gloor, Sumarah) have developed expertise in studying the microbiota and their metabolites in various niches including vaginal, breast, heart, mouth, gut, urine and cancerous tissue. We have many clinically oriented projects, including using probiotics for which we have considerable expertise. Through an extensive network of collaborators, including in Africa, Europe USA and New Zealand, we provide an excellent environment for students and fellows to gain 'real world' experience. While there is value in finding out what is there, the key is to know the function and outcome for the host. We approach this through microbial and metagenomic sequencing, bioinformatics, transcriptomics, and metabolomics. With careful patient selection and sample collection, a sound hypothesis and objective, and teamwork, we are well placed to acquire really good, publishable data.

Bhagi Singh
Autoimmune diseases affect 5-7% of the population. The focus of our laboratory is to develop specific immunotherapeutic approaches for autoimmune type 1 diabetes (T1D). For this purpose we investigate the regulation of autoimmunity by understanding the molecular, cellular and genetic basis of the T cell-mediated immune responses in diabetes.

Alp Sener
The nature of transplantation leads to tissue injury as organs are damaged by the loss of blood supply and ischemia associated with the procurement procedure. The potential benefit of donor tissue and storage modification to protect organs has not been intensively investigated as mainstream approaches to improving transplant survival remains focused on pharmacological inhibition of immune cell activation. As the discrepancy between the availability of donor organs the increasing rate of patients who require renal transplants continues to diverge, the search for methods of prolonging renal graft survival becomes paramount. My laboratory is interested in establishing novel strategies of minimizing post-transplant graft rejection and in promoting improved early and late renal allograft survival using both in vitro and in vivo models for donor tissue and cell modification, as this represents a complementary approach to T cell mediated tolerance in promoting both short and long-term graft survival.

Kelly Summers
Our lab is both a Research & Development lab and a Service lab that is focused on evaluating cellular immune responses in various clinical settings including autoimmune diseases, inflammatory disorders/conditions, plus drug efficacy and mechanisms. This includes using and developing innovative, multiplex bead-based assays to quantify multiple protein immune regulators (up to 40) simultaneously in small sample volumes (< 50 uL) of most biological fluids. Our goal is to identify new target biomarkers with diagnostic and/or therapeutic significance in clinical settings. We have several collaborative research projects with local Clinicians, Scientists, and private companies and gladly welcome new collaborations!

Miguel Valvano
We work on two projects: (i) Mechanism of assembly of O antigen lipopolysaccharide (LPS), and (ii) Pathogenesis of the Burkholderia cepacia complex. LPS is a complex glycolipid on the surface of Gram-negative bacteria. We study the structure-function of membrane proteins needed for O antigen synthesis to design inhibitors that will interfere with this process, which may be useful as novel antimicrobials. The Burkholderia cepacia complex (Bcc) is a group of related species that are a major health risk for patients with the genetic disease cystic fibrosis. We discovered that Bcc bacteria survive in free-living amoebae and macrophages. We work on the elucidation of bacterial virulence factors involved in intracellular persistence.
Sasan Hosseini
Director of Transplant Infectious Diseases, London Health Sciences Centre, UWO
77 published papers in the field of Infectious Diseases (mainly in immunocompromised hosts)
Area of interest:
Cytomegalovirus infection following solid organ or stem cell transplantation
Pneumocystis jirovecii infection following organ transplantation
Post-transplant lymphoproliferative disease
Immunization in immunocompromised hosts

Marina Salvadori
Marina Salvadori graduated from medicine at Queen's University, and residency training in pediatrics at the University of Manitoba, Winnipeg. After that she trained in Infectious Diseases at The Hospital for Sick Children in Toronto. She was working there in May 2000, and joined a team of pediatricians who responded to the call for help from Walkerton. Dr. Salvadori is currently an infectious diseases consultant at the Children's Hospital of Western Ontario. She is very interested in vaccine preventable diseases, immunization education and awareness. Dr. Salvadori has advocated locally, provincially and nationally for publicly funded immunizations for children. She has sat in various capacities on the National Committee for Immunizations for Canada, setting Canadian immunization policy. Her research interests have included the long term follow up of the Walkerton population, E.coli O157, vaccine policy and implementation, and infection control policy and practice. She is an Infection Prevention and Control Physician Consultant with Public Health Ontario.

ID bio cont:

Organizing Committee
Martin McGavin (chair)
Carole Creuzenet
Eric Arts
Jeremy Brozyna
Fern Russell
Kim Arts
Fred Williams
Steve Kerfoot
Rick Gibson
Kaveri Gupta
Mike Silverman