Biophysics 9645A/Medical Biophysics 3645A

Introduction to Biomedical Optics

1. Course Information

Biophysics 9645A (undergraduate equivalent Medbio 3645A): Introduction to Biomedical Optics

Fall Term 2018

An introduction to the physical and biophysical principles underlying the methodology and technology for the medical uses of light including diagnostic, monitoring and therapeutic applications. Specific areas will include: instrumentation which involves light detection and analysis, light spectroscopy which involves photodynamic therapy and diffuse optical tomography and optical imaging.

Lectures:
Mondays 1:30 -2:30 in MSB190 (Medical Sciences Building)
Wednesdays 1:30 -2:30 in MSB190 (Medical Sciences Building)

Laboratories:
None

Tutorials:
None

Prerequisite(s) for undergraduate students:
One of Calculus 1000A/B or 1500A/B or the former 1100A/B plus one of Calculus 1301A/B or 1501A/B, or Applied Mathematics 1413; one of Physics 1028A/B, 1301A/B, 1401A/B or 1501A/B, plus one of Physics 1029A/B, 1302A/B, 1402A/B or 1502A/B. Although typically taken in third year, this course is open to second-year students with a minimum average of 75% in first year.

Corequisites:
None
Antirequisites:
None

Accessibility Statement

Please contact the course instructor if you require material in an alternate format or if you require any other arrangements to make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at 661-2111 x 82147 for any specific question regarding an accommodation.

2. Instructor Information

<table>
<thead>
<tr>
<th>Instructors</th>
<th>Email</th>
<th>Office</th>
<th>Phone</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Jeffrey Carson (Course</td>
<td>jcarson@lawsonimaging.ca</td>
<td>Lawson</td>
<td>64767</td>
<td>Email for appointment</td>
</tr>
<tr>
<td>Coordinator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Mamadou Diop</td>
<td>mdiop@lawsonimaging.ca</td>
<td>Lawson</td>
<td>64166</td>
<td>Email for appointment</td>
</tr>
<tr>
<td>Dr. Timothy Scholl</td>
<td>scholl@uwo.ca</td>
<td>Robarts</td>
<td>20019</td>
<td>Email for appointment</td>
</tr>
<tr>
<td>Dr. Kevin Jordan</td>
<td>kevin.jordan@lhsc.on.ca</td>
<td>LRCP</td>
<td>53145</td>
<td>Email for appointment</td>
</tr>
</tbody>
</table>

Course Website:

Please access the course website through OWL at https://owl.uwo.ca/portal

3. Course Syllabus

General Overview:
Optical methods for diagnosis and treatment of disease have been in use for more than 100 years. Recent developments in optical technology have brought about a revolution in the use of light for preclinical drug testing, the treatment of eye and skin disorders, intra-operative evaluation during surgery, and the detection of cancer. The field of biomedical optics is growing at a rapid pace world-wide with innovative contributions from academic research groups and the biophotonics industry.
Course Objectives:
The course will serve as an introduction to the physical and biophysical principles underlying the methodology and technology for the medical use of light. Upon successful completion, students will have an understanding of the physics of light and the physics of the interaction of light with matter. Students will be able to use mathematical and computational tools to solve problems relevant to biomedical optical practice and research. Furthermore, students will be able to assess the advantages and limitations of current optical methods for detection and treatment of disease and evaluate the suitability of new optical technologies for medical research using established physical and biophysical principles.

Course structure:
The course consists of 22 lectures, 3 laboratory tours, and 4 problem assignments. It will cover four topics within the discipline of biomedical optics.

Topic 1: Instrumentation
Instructor: Dr. Tim Scholl
Lecture Dates: 6 lectures
- a. Introduction to Light
- b. Light generation
- c. Light transportation and manipulation
- d. Light detection and Analysis
- e. Assignment #1

Topic 2: Introduction to light spectroscopy
Instructor: Dr. Kevin Jordan
Lecture Dates: 4 lectures + 1 laboratory tour
- a. Spectroscopy overview: classifications, acquisition methods, applications
- b. Fluorescence spectroscopy of solutions and tissue
- c. Spectral effects as local probes (temperature, pH, oxygen, viscosity)
- d. Applications in medicine: photodynamic therapy
- e. Tour: London Regional Cancer Program
- f. Assignment #2

Mid-term Test (Scholl/Jordan) – Wednesday Nov 4

Topic 3: Near infrared spectroscopy
Instructor: Dr. Mamadou Diop
Lecture Dates: 6 lectures
- a. Introduction
- b. Light Scattering by Tissue
c. Modeling Light transport in Tissue
d. Application: Pulse Oximetry
e. Special Topic: Diffuse Optical Spectroscopy
f. Assignment #3

Topic 4: Optical Imaging

Instructor: Dr. Jeffrey Carson
Lecture Dates: 6 lectures
 a. Methods for optical imaging tissue
 b. Optical coherence tomography (OCT)
 c. Photacoustic tomography (PAT)
 d. Assignment #4

Final Exam (Diop/Carson)

4. **Learning Objectives**

1. Knowledge
 Students will be able to explain the motivation, instrumentation, methods, and practical uses of biomedical optics. Students will be able to analyze and solve problems related to biomedical optics.

2. Literacies and Interdisciplinarity
 Students will be able to understand and use technical language, theory, and numerical methods. Students will be able to use knowledge to answer questions related to biomedical optics. They will be able to describe limitations of the sources and methods they use.

3. Communication
 Students will be able to communicate academic work through written means.

4. Resilience and Life-long Learning
 Students will be able to adapt to biomedical optics challenges by being self-aware, resilient, and self-reflexive. In addition to their mastery of discipline specific knowledge and methods, students will be able to articulate a clear understanding of their own interests and goals as well as the limitations of their own knowledge.

5. Global and Community Engagement
 Students will be able to interact ethically, compassionately, and thoughtfully with peers and instructors.
6. Critical Inquiry and Creative Thinking
Students will have developed habits of constructive skepticism, differentiation and intellectual adaptability in their approaches to biomedical optics. They will be able to identify underlying assumptions and evidence thereby arriving at conclusions about reliability. They will bring habits of careful judgment, an appetite for further refinement, and highly developed problem-solving skills to biomedical optics problems.

7. Professionalism and Ethical Conduct
Students will be able to recognize the ways in which their conduct affects others. They will be able to work effectively with others practically (e.g. time management, conflict resolution); ethically (e.g. division of intellectual responsibility and credit) and socially (e.g. respecting cultural differences, work preferences).

5. Course Materials
Course Website:
The course website can be accessed on OWL at https://owl.uwo.ca/portal

Textbook:
There is no single text which encompasses the material in the course. Students are directed to the following texts for supplementary information:

Laboratory Tours:
The course will include a tour of a clinical facility to demonstrate select topics covered in class. The laboratory tour will be organized outside of class time.
Photodynamic Therapy at London Regional Cancer Program, date and time to be determined by consensus of the class.

Contact with Instructors regarding course materials:
We encourage students to approach and discuss any course-related problems with the relevant instructor. Please make an appointment (preferably via email) utilizing the contact information provided above.

Collaborative work:
Students are encouraged to work together, but each student must take total responsibility for their submitted work. Note on Plagiarism: “Students must write their essays and assignments in their own words. Whenever students take an idea, or a passage from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence” (see Scholastic Offence Policy in the Western Academic Calendar).

6. Evaluation
The final grade will be based on a 25% contribution from each of the four topics (see “Course Syllabus” section above). The mark for each topic will be obtained from problem assignments, the mid-term test and the final exam. Note that each midterm test will have two equal sections related to topics 1 and 2. The final exam will have two equal sections related to topics 3 and 4.

Final grade breakdown:
Assignments: 60%
Mid-term Test: 20%
Final Exam: 20%

The midterm test and final exam will be in hand-written format. Questions will include problems to be solved and may also include short answer questions as well as short “essay” questions. The only electronic devices permitted for use during the exams are standard (not programmable) calculators.

Assignments that are submitted late will receive a penalty of 10% per day. For example, an assignment which is 3 days late will receive a penalty of 3×10% = 30%. An extension for assignment submission, which is delayed due to medical
reasons can only be granted by the Academic Counseling Office. Students are advised to inform the instructor as soon as possible regarding such delays.

Assignment Schedule:

<table>
<thead>
<tr>
<th>Assignment 1</th>
<th>Instrumentation</th>
<th>Handed Out</th>
<th>Due Date</th>
<th>Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 2</td>
<td>Spectroscopy Basics</td>
<td>Mid Oct</td>
<td>Mid-Late Oct.</td>
<td>Late Oct</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>Spectroscopy Applications</td>
<td>Early Nov</td>
<td>Mid Nov</td>
<td>Late Nov</td>
</tr>
<tr>
<td>Assignment 4</td>
<td>Imaging</td>
<td>Late Nov</td>
<td>Early Dec</td>
<td>Early Dec</td>
</tr>
</tbody>
</table>

7. Additional Information/Statements

Statement on Use of Electronic Devices:
The only electronic devices permitted for use during tests and exams are standard (not programmable) calculators. Use of mobile phones in class, or during tests and exams is not permitted under any circumstances.

Statement on Academic Offences:
“Scholastic offences are taken seriously and students are directed to read the appropriate policy, specifically, the definition of what constitutes a Scholastic Offence, at the following website: http://www.uwo.ca/univsec/appeals_discipline/index.html

Email Correspondence
For security reasons, emails will only be answered when they come from your official UWO email account. Please keep all correspondence professional and concise.

Absence from course commitments
A. Absence for medical illness:
Western requires documentation from the medical community for students who require academic accommodation due to medical illness. Students are required to have their physician or health care provider fill out a Student Medical Certificate.
If you require this documentation from Student Health Services:
- The request for medical certificate should be made during the initial visit with the SHS physician or nurse practitioner.
- The fee for having this form completed is $20. You may pick up the completed form and make your payment in the Accounts Office (Room 19) at SHS.
- Medical certificates will only be considered for students who are seriously affected by illness and cannot reasonably be expected to meet their academic responsibilities.

Special Examinations

A Special Examination is any examination other than the regular examination, and it may be offered only with the permission of the course co-ordinator and the Medical Biophysics Graduate Chair. Permission to write a Special Examination may be given on the basis of compassionate or medical grounds with appropriate supporting documents.

If a student fails to write a scheduled Special Examination, permission to write another Special Examination will be granted only with the permission of the Graduate Chair in exceptional circumstances and with appropriate supporting documents.

Students who are in emotional/mental distress should refer to Mental Health@Western, https://uwo.ca/health/mental_wellbeing/crisis.html for a complete list of options about how to obtain help.

Support Services:

Student Health Services: http://www.shs.uwo.ca/