Schulich school of Medicine and Dentistry logo Department of Anatomy and Cell Biology Schulich School of Medicine & Dentistry

Dr. Susanne Schmid

schmid

Associate Professor

Office: Medical Sciences Building, Room 470
Phone:
519-661-2111 Ext. 82668
Fax:
519-661-3936
Email:
susanne.schmid@schulich.uwo.ca
Visit: www.theschmidlab.com

Research Interests:

Mammalian brains are complex structures mediating complex behavioural tasks. It is one of the major challenges for modern Neuroscience to find out how the mammalian brain processes sensory information in order to generate the appropriate behavioural response.

Our brain is constantly bombarded with sensory information coming from the ears, eyes, nose, tongue body surface, and interior. Most of this information is filtered pre-attentively in order to allow the brain to allocate its neural resources on focussing on salient information. Many mental disorders and neurodegenerative diseases are associated with impairments of sensory filtering, which is closely related to other cognitive deficits. Our research concentrates on these early stages of sensory information processing and filtering.

Habituation:

Habituation is a form of sensory filtering and also a very essential form of implicit learning; we all perform habituation learning innumerable times during a day without perceiving it. Some psychiatric disorders are accompanied by an impairment of habituation. In order to access the cellular and molecular processes that are responsible for habituation, we use the acoustic startle response and exploratory behaviour in an open field as behavioural models. We have also developed a rodent brain slice preparation that contains a large portion of the startle pathway and allows combining patch-clamp recordings in vitro with pharmacological treatment in vivo. Using this preparation we found that afferent sensory fibres within the startle pathway are subject to synaptic depression when stimulated in a way that mimics their activity during the presentation of startle stimuli. Synaptic depression shares many features with habituation. One specific goal of our research is to explore the molecular mechanism that leads to synaptic depression and to test our hypothesis that this is the cellular mechanism underlying short-term habituation of startle. We aim to completely unravel the cellular and molecular mechanisms of short-term habituation of startle and it will be interesting to see to what extend the same mechanisms underlie habituation of exploratory behavior.

Prepulse Inhibition:

Startle responses are inhibited by a preceding non-startling stimulus (prepulse). Prepulse inhibition (PPI) is considered to represent an ubiquitous sensory filter mechanism in our brain that protects the processing of sensory stimuli. An impairment of PPI is one of the major symptoms in schizophrenia and some other neurological disorders. We explore neurotransmitters, receptors and second messenger pathways that mediate PPI in rodents. Animal models for schizophrenia are included in our experiments in order to examine the difference in signalling in these animals. One focus is on the role of cholinergic neurons in PPI and in sensory filtering in general. Our results will provide more understanding about cellular dysfunction in schizophrenics and will possibly indicate new targets for pharmaceutical intervention. In a side project we also examine disruptions of midbrain cholinergic neurotransmission in Parkinson’s disease.

Selected Publications:

  1. Shaikh K, Yang A, Youshin K, Schmid S# (2015) Transgenic LRRK2R1441G rats - a model for Parkinson disease? PeerJ, https://peerj.com/manuscripts/3864/

  2. Pinnock F, Bosch D, Brown T, Simons-Weidenmaier N, Yeomans JS, DeOliveira C, Schmid S# (2015) Nicotine receptors mediating sensorimotor gating and its enhancement by systemic nicotine. Frontiers in Behav Neurosci,9:30. doi: 10.3389/fnbeh.2015.00030.

  3. Schmid S#, Wilson DA, Rankin CH (2014) Habituation mechanisms and their importance for cognitive function. Frontiers in Integr Neurosci, doi: 10.3389/fnint.2014.00097

  4. Valsamis B, Chang M, Typlt M,  Schmid S# (2014) Activation of mGluR2/3 receptors in the ventral prefrontal cortex reverses sensorimotor gating deficits induced by a systemic NMDA receptor antagonist. Int J Neuropsychopharmacol, 17 (2): 303-312. doi 10.1017/S1461145713 001041.

  5. Shaikh K#, Schmid S (2014) There are No Sex-Specific Differences in Habituation and Prepulse Inhibition of Acoustic Startle Response in Sprague Dawley Rats. WURJ,4 (1):e11 doi10.5206/wurjhns.2013-14.7

  6. Typlt M, Mirkowski M, Azzopardi E. Ruettiger L, , Ruth P, Schmid S# (2013) Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory. PLOS ONE,  8 (11): e81217, doi: 10.1371/journal.pone.0081270

  7. Typlt M, Mirkowski M, Azzopardi E, Pilz P, Ruth P, Schmid S# (2013) Habituation of reflexive and motivated behaviour in mice with deficient BK channel function. Frontiers in Integrative Neuroscience, 7:79. doi: 10.3389/fnint.2013.00079

  8. Azzopardi E, Typlt M, Jenkins B, Schmid S# (2013) Sensorimotor gating and spatial learning in α7- nicotinic receptor knock-out mice. Genes, Brains and Behavior (4):414-23. doi: 10.1111/gbb.12038

  9. Pitchers KK, Schmid S, Di Sebastiano AR, Wang X, Laviolette SR, Lehman MN, Coolen LM (2012) Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens. PLoS ONE 7 (4): e34700, doi: 10.1371/journal.pone.0034700

  10. Valsamis B, Schmid S# (2011) Habituation and prepulse inhibition of the acoustic startle in rodents. J. Vis. Exp. (55):e3446 doi: 10.3791/3446

  11. Guzman MS, De Jaeger X, Raulic S, Souza IA, Li AX, Schmid S, Menon RS, Gainetdinov RR, Caron MG, Bartha R, Prado VF, Prado MA# (2011) Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. PLOS Biology, 9 (11): e1001194, doi:10.1371/journal.pbio.1001194

  12. Geis H-R, Schmid S# (2011) Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle. J. Neurosci. Res. 71(2): 114-123. doi:10.1016/j.neures.2011.06.007

  13. Schmid S#, Azzopardi E, De Jaeger X, Prado MAM, Prado VF (2011) VAChT knock-down mice show normal prepulse inhibition but disrupted long-term habituation. Genes, Brains and Behavior, 10(4):457-64. doi:10.1111/j.1601-183X.2011.00686.x.

  14. Schmid S#, Brown T, Simons-Weidenmaier N, Weber M, Fendt M (2010) Group III metabotropic glutamate receptors inhibit giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle. J. Neuroscience 30(31):10422-30, doi:10.1523/JNEUROSCI.0024-10.2010